These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22891695)

  • 1. Colloid transport in dolomite rock fractures: effects of fracture characteristics, specific discharge, and ionic strength.
    Mondal PK; Sleep BE
    Environ Sci Technol; 2012 Sep; 46(18):9987-94. PubMed ID: 22891695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Favorable and unfavorable attachment of colloids in a discrete sandstone fracture.
    Spanik S; Rrokaj E; Mondal PK; Sleep BE
    J Contam Hydrol; 2021 Dec; 243():103919. PubMed ID: 34763243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite.
    McCarthy JF; McKay LD; Bruner DD
    Environ Sci Technol; 2002 Sep; 36(17):3735-43. PubMed ID: 12322745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct visualization of colloid transport over natural heterogeneous and artificial smooth rock surfaces.
    Borgman O; Be'er A; Weisbrod N
    J Contam Hydrol; 2022 Dec; 251():104067. PubMed ID: 36113262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloid transport with wetting fronts: interactive effects of solution surface tension and ionic strength.
    Zhuang J; Goeppert N; Tu C; McCarthy J; Perfect E; McKay L
    Water Res; 2010 Feb; 44(4):1270-8. PubMed ID: 20056511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of clay colloid and artificial microsphere transport in natural discrete fractures.
    Zvikelsky O; Weisbrod N; Dody A
    J Colloid Interface Sci; 2008 Jul; 323(2):286-92. PubMed ID: 18499118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observed and simulated fluid drag effects on colloid deposition in the presence of an energy barrier in an impinging jet system.
    Johnson WP; Tong M
    Environ Sci Technol; 2006 Aug; 40(16):5015-21. PubMed ID: 16955901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distance and flow effects on microsphere transport in a large gravel column.
    Close ME; Pang L; Flintoft MJ; Sinton LW
    J Environ Qual; 2006; 35(4):1204-12. PubMed ID: 16825440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of neodymium by dolomite at variable ionic strength as probed by batch and column experiments.
    Emerson HP; Zengotita F; Richmann M; Katsenovich Y; Reed DT; Dittrich TM
    J Environ Radioact; 2018 Oct; 190-191():89-96. PubMed ID: 29775842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and retention of Shewanella oneidensis strain MR1 in water-saturated porous media with different grain-surface properties.
    Ning Z; Li R; Lian K; Liao P; Liao H; Liu C
    Chemosphere; 2019 Oct; 233():57-66. PubMed ID: 31163309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial interactions and colloid retention under steady flows in a capillary channel.
    Lazouskaya V; Jin Y; Or D
    J Colloid Interface Sci; 2006 Nov; 303(1):171-84. PubMed ID: 16930611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.
    Karaca S; Gürses A; Ejder M; Açikyildiz M
    J Colloid Interface Sci; 2004 Sep; 277(2):257-63. PubMed ID: 15341833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle shape on colloid retention and release in saturated porous media.
    Liu Q; Lazouskaya V; He Q; Jin Y
    J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloid transport in porous media: impact of hyper-saline solutions.
    Magal E; Weisbrod N; Yechieli Y; Walker SL; Yakirevich A
    Water Res; 2011 May; 45(11):3521-32. PubMed ID: 21550095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory.
    Tong M; Johnson WP
    Environ Sci Technol; 2007 Jan; 41(2):493-9. PubMed ID: 17310712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media.
    Bradford SA; Torkzaban S
    Langmuir; 2015 Nov; 31(44):12096-105. PubMed ID: 26484563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property.
    Zhuang J; Qi J; Jin Y
    Environ Sci Technol; 2005 Oct; 39(20):7853-9. PubMed ID: 16295847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.