These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22891702)

  • 1. Simulating the effect of climate extremes on groundwater flow through a lakebed.
    Virdi ML; Lee TM; Swancar A; Niswonger RG
    Ground Water; 2013 Mar; 51(2):203-18. PubMed ID: 22891702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of Lake-Groundwater Interaction under Steady-State Flow.
    Lu C; Zhang B; He X; Cao G; Sun Q; Yan L; Qin T; Li T; Li Z
    Ground Water; 2021 Jan; 59(1):90-99. PubMed ID: 32700342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the dynamics of groundwater, lakebed transport, nutrient inflow and algal blooms in Upper Klamath Lake, Oregon, USA.
    Essaid HI; Kuwabara JS; Corson-Dosch NT; Carter JL; Topping BR
    Sci Total Environ; 2021 Apr; 765():142768. PubMed ID: 33097260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production.
    Bonte M; Zwolsman JJ
    Water Res; 2010 Aug; 44(15):4411-24. PubMed ID: 20580400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landscape influences on climate-related lake shrinkage at high latitudes.
    Roach JK; Griffith B; Verbyla D
    Glob Chang Biol; 2013 Jul; 19(7):2276-84. PubMed ID: 23536378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia.
    Yihdego Y; Webb J
    J Environ Manage; 2012 Dec; 112():149-59. PubMed ID: 22898707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geophysical and Hydrologic Studies of Lake Seepage Variability.
    Toran L; Nyquist J; Rosenberry D; Gagliano M; Mitchell N; Mikochik J
    Ground Water; 2015; 53(6):841-50. PubMed ID: 25556924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating a lake as a high-conductivity variably saturated porous medium.
    Chui TF; Freyberg DL
    Ground Water; 2008; 46(5):688-94. PubMed ID: 18624695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Method for Simulating Groundwater Inundation Using the MODFLOW 6 Lake Transport Package.
    Mancewicz LK; Mayer A; Langevin C; Gulley J
    Ground Water; 2023; 61(3):421-430. PubMed ID: 36102199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.
    Jeppesen J; Christensen S
    Ground Water; 2015; 53(4):542-9. PubMed ID: 25187115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future climate scenarios and rainfall--runoff modelling in the Upper Gallego catchment (Spain).
    Bürger CM; Kolditz O; Fowler HJ; Blenkinsop S
    Environ Pollut; 2007 Aug; 148(3):842-54. PubMed ID: 17428594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating long-term patterns of decreasing groundwater discharge through a lake-bottom permeable reactive barrier.
    McCobb TD; Briggs MA; LeBlanc DR; Day-Lewis FD; Johnson CD
    J Environ Manage; 2018 Aug; 220():233-245. PubMed ID: 29783177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MODFLOW-Based Coupled Surface Water Routing and Groundwater-Flow Simulation.
    Hughes JD; Langevin CD; White JT
    Ground Water; 2015; 53(3):452-63. PubMed ID: 24902965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.
    Fadlillah LN; Widyastuti M
    Environ Monit Assess; 2016 Aug; 188(8):448. PubMed ID: 27384226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the groundwater recharge in karst aquifers by using a reservoir model.
    Ke T; Shu L; Chen X
    Water Sci Technol; 2013; 68(2):406-12. PubMed ID: 23863435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain.
    Kuhn NJ; Baumhauer R; Schütt B
    J Environ Manage; 2011 Feb; 92(2):275-83. PubMed ID: 19906481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecosystem approach to water resources management using the MIKE 11 modeling system in the Strymonas River and Lake Kerkini.
    Doulgeris C; Georgiou P; Papadimos D; Papamichail D
    J Environ Manage; 2012 Feb; 94(1):132-43. PubMed ID: 21924542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed.
    Elçi A; Karadaş D; Fistikoğlu O
    Water Sci Technol; 2010; 62(1):180-8. PubMed ID: 20595769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.
    Morway ED; Niswonger RG; Langevin CD; Bailey RT; Healy RW
    Ground Water; 2013 Mar; 51(2):237-51. PubMed ID: 22834908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.