BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22891849)

  • 1. Price to be paid for two-metal catalysis: magnesium ions that accelerate chemistry unavoidably limit product release from a protein kinase.
    Jacobsen DM; Bao ZQ; O'Brien P; Brooks CL; Young MA
    J Am Chem Soc; 2012 Sep; 134(37):15357-70. PubMed ID: 22891849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divalent metal ions control activity and inhibition of protein kinases.
    Knape MJ; Ballez M; Burghardt NC; Zimmermann B; Bertinetti D; Kornev AP; Herberg FW
    Metallomics; 2017 Nov; 9(11):1576-1584. PubMed ID: 29043344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis.
    Bao ZQ; Jacobsen DM; Young MA
    Structure; 2011 May; 19(5):675-90. PubMed ID: 21565702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A.
    Khavrutskii IV; Grant B; Taylor SS; McCammon JA
    Biochemistry; 2009 Dec; 48(48):11532-45. PubMed ID: 19886670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into product release dynamics through structural analyses of thymidylate kinase.
    Chaudhary SK; Iyyappan Y; Elayappan M; Jeyakanthan J; Sekar K
    Int J Biol Macromol; 2019 Feb; 123():637-647. PubMed ID: 30447376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme.
    Poyner RR; Cleland WW; Reed GH
    Biochemistry; 2001 Jul; 40(27):8009-17. PubMed ID: 11434770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase.
    Adams JA; Taylor SS
    Protein Sci; 1993 Dec; 2(12):2177-86. PubMed ID: 8298463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multiple nucleotide-divalent cation binding modes of Saccharomyces cerevisiae CK2α indicate a possible co-substrate hydrolysis product (ADP/GDP) release pathway.
    Liu H; Wang H; Teng M; Li X
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):501-13. PubMed ID: 24531484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-close structural change upon ligand binding and two magnesium ions required for the catalysis of N-acetylhexosamine 1-kinase.
    Sato M; Arakawa T; Nam YW; Nishimoto M; Kitaoka M; Fushinobu S
    Biochim Biophys Acta; 2015 May; 1854(5):333-40. PubMed ID: 25644306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of conformational changes along the kinetic pathway of protein kinase A using a catalytic trapping technique.
    Shaffer J; Adams JA
    Biochemistry; 1999 Sep; 38(37):12072-9. PubMed ID: 10508411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoryl transfer by protein kinase A is captured in a crystal lattice.
    Bastidas AC; Deal MS; Steichen JM; Guo Y; Wu J; Taylor SS
    J Am Chem Soc; 2013 Mar; 135(12):4788-98. PubMed ID: 23458248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic and regulatory roles of divalent metal cations on the phosphoryl-transfer mechanism of ADP-dependent sugar kinases from hyperthermophilic archaea.
    Merino F; Rivas-Pardo JA; Caniuguir A; García I; Guixé V
    Biochimie; 2012 Feb; 94(2):516-24. PubMed ID: 21906652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of product release and metal ions in a metallonuclease.
    Xie F; Dupureur CM
    Arch Biochem Biophys; 2009 Mar; 483(1):1-9. PubMed ID: 19161971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and thermodynamic analysis defines roles for two metal ions in DNA polymerase specificity and catalysis.
    Gong S; Kirmizialtin S; Chang A; Mayfield JE; Zhang YJ; Johnson KA
    J Biol Chem; 2021; 296():100184. PubMed ID: 33310704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three metal ions participate in the reaction catalyzed by T5 flap endonuclease.
    Syson K; Tomlinson C; Chapados BR; Sayers JR; Tainer JA; Williams NH; Grasby JA
    J Biol Chem; 2008 Oct; 283(42):28741-6. PubMed ID: 18697748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse.
    Perera L; Freudenthal BD; Beard WA; Shock DD; Pedersen LG; Wilson SH
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5228-36. PubMed ID: 26351676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium dependence of the amplified conformational switch in the trans-acting hepatitis delta virus ribozyme.
    Tinsley RA; Harris DA; Walter NG
    Biochemistry; 2004 Jul; 43(28):8935-45. PubMed ID: 15248751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic metal ions and enzymatic processing of DNA and RNA.
    Palermo G; Cavalli A; Klein ML; Alfonso-Prieto M; Dal Peraro M; De Vivo M
    Acc Chem Res; 2015 Feb; 48(2):220-8. PubMed ID: 25590654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the effect of magnesium ion concentration on the catalytic activity of ribonuclease H through computation: does a third metal binding site modulate endonuclease catalysis?
    Ho MH; De Vivo M; Dal Peraro M; Klein ML
    J Am Chem Soc; 2010 Oct; 132(39):13702-12. PubMed ID: 20731347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release.
    Nowotny M; Yang W
    EMBO J; 2006 May; 25(9):1924-33. PubMed ID: 16601679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.