These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 22892035)

  • 1. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.
    Miralles P; Church TL; Harris AT
    Environ Sci Technol; 2012 Sep; 46(17):9224-39. PubMed ID: 22892035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity.
    Tripathi DK; Shweta ; Singh S; Singh S; Pandey R; Singh VP; Sharma NC; Prasad SM; Dubey NK; Chauhan DK
    Plant Physiol Biochem; 2017 Jan; 110():2-12. PubMed ID: 27601425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles based on essential metals and their phytotoxicity.
    Ruttkay-Nedecky B; Krystofova O; Nejdl L; Adam V
    J Nanobiotechnology; 2017 Apr; 15(1):33. PubMed ID: 28446250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Editorial.
    Peralta-Videa JR; Sahi SV
    Plant Physiol Biochem; 2017 Jan; 110():1. PubMed ID: 28040154
    [No Abstract]   [Full Text] [Related]  

  • 6. Physiological and biochemical response of plants to engineered NMs: Implications on future design.
    de la Rosa G; García-Castañeda C; Vázquez-Núñez E; Alonso-Castro ÁJ; Basurto-Islas G; Mendoza Á; Cruz-Jiménez G; Molina C
    Plant Physiol Biochem; 2017 Jan; 110():226-235. PubMed ID: 27328789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A review of uptake, translocation and phytotoxicity of engineered nanoparticles in plants].
    Yang XP; Zhao FJ
    Huan Jing Ke Xue; 2013 Nov; 34(11):4495-502. PubMed ID: 24455965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies.
    Grieger KD; Hansen SF; Sørensen PB; Baun A
    Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting effects of engineered carbon nanotubes on plants: a review.
    Vithanage M; Seneviratne M; Ahmad M; Sarkar B; Ok YS
    Environ Geochem Health; 2017 Dec; 39(6):1421-1439. PubMed ID: 28444473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered nanomaterials for plant growth and development: A perspective analysis.
    Verma SK; Das AK; Patel MK; Shah A; Kumar V; Gantait S
    Sci Total Environ; 2018 Jul; 630():1413-1435. PubMed ID: 29554761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil.
    Zhu Y; Xu F; Liu Q; Chen M; Liu X; Wang Y; Sun Y; Zhang L
    Sci Total Environ; 2019 Apr; 662():414-421. PubMed ID: 30690375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Eco-toxicological effect of metal-based nanoparticles on plants: Research progress].
    Zhang H; Peng C; Yang JJ; Shi JY
    Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):885-92. PubMed ID: 23755509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation.
    Ma X; Geisler-Lee J; Deng Y; Kolmakov A
    Sci Total Environ; 2010 Jul; 408(16):3053-61. PubMed ID: 20435342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?
    Reddy PVL; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2016 Oct; 568():470-479. PubMed ID: 27314900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Health and safety implications of occupational exposure to engineered nanomaterials.
    Stebounova LV; Morgan H; Grassian VH; Brenner S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):310-21. PubMed ID: 22131295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental behavior of coated NMs: Physicochemical aspects and plant interactions.
    López-Moreno ML; Cedeño-Mattei Y; Bailón-Ruiz SJ; Vazquez-Nuñez E; Hernandez-Viezcas JA; Perales-Pérez OJ; la Rosa G; Peralta-Videa JR; Gardea-Torresdey JL
    J Hazard Mater; 2018 Apr; 347():196-217. PubMed ID: 29331809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of engineered nanomaterials on plants growth: an overview.
    Aslani F; Bagheri S; Muhd Julkapli N; Juraimi AS; Hashemi FS; Baghdadi A
    ScientificWorldJournal; 2014; 2014():641759. PubMed ID: 25202734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants.
    Hatami M; Kariman K; Ghorbanpour M
    Sci Total Environ; 2016 Nov; 571():275-91. PubMed ID: 27485129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.