These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 22892124)
1. Molecular dynamics simulation of HIV-1 fusion domain-membrane complexes: Insight into the N-terminal gp41 fusion mechanism. Promsri S; Ullmann GM; Hannongbua S Biophys Chem; 2012; 170():9-16. PubMed ID: 22892124 [TBL] [Abstract][Full Text] [Related]
2. Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins. Lev N; Shai Y J Mol Biol; 2007 Nov; 374(1):220-30. PubMed ID: 17919659 [TBL] [Abstract][Full Text] [Related]
3. The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes. Heller WT; Zolnierczuk PA Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):565-572. PubMed ID: 30550881 [TBL] [Abstract][Full Text] [Related]
4. Membrane structure of the human immunodeficiency virus gp41 fusion domain by molecular dynamics simulation. Kamath S; Wong TC Biophys J; 2002 Jul; 83(1):135-43. PubMed ID: 12080106 [TBL] [Abstract][Full Text] [Related]
5. Effect of lipid composition on the "membrane response" induced by a fusion peptide. Volynsky PE; Polyansky AA; Simakov NA; Arseniev AS; Efremov RG Biochemistry; 2005 Nov; 44(44):14626-37. PubMed ID: 16262262 [TBL] [Abstract][Full Text] [Related]
6. Conformational partitioning of the fusion peptide of HIV-1 gp41 and its structural analogs in bilayer membranes. Maddox MW; Longo ML Biophys J; 2002 Dec; 83(6):3088-96. PubMed ID: 12496080 [TBL] [Abstract][Full Text] [Related]
7. Membrane curvature and surface area per lipid affect the conformation and oligomeric state of HIV-1 fusion peptide: a combined FTIR and MD simulation study. Barz B; Wong TC; Kosztin I Biochim Biophys Acta; 2008 Apr; 1778(4):945-53. PubMed ID: 18177732 [TBL] [Abstract][Full Text] [Related]
8. Bilayer conformation of fusion peptide of influenza virus hemagglutinin: a molecular dynamics simulation study. Huang Q; Chen CL; Herrmann A Biophys J; 2004 Jul; 87(1):14-22. PubMed ID: 15240440 [TBL] [Abstract][Full Text] [Related]
9. Molecular Dynamics Investigation of Lipid-Specific Interactions with a Fusion Peptide. Heller WT Biomolecules; 2024 Feb; 14(3):. PubMed ID: 38540705 [TBL] [Abstract][Full Text] [Related]
10. Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers. Lee M; Morgan CA; Hong M J Biol Chem; 2019 Oct; 294(40):14732-14744. PubMed ID: 31409642 [TBL] [Abstract][Full Text] [Related]
11. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus. Victor BL; Baptista AM; Soares CM J Chem Inf Model; 2012 Nov; 52(11):3001-12. PubMed ID: 23101989 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly molecular dynamics simulations shed light into the interaction of the influenza fusion Peptide with a membrane bilayer. Victor BL; Lousa D; Antunes JM; Soares CM J Chem Inf Model; 2015 Apr; 55(4):795-805. PubMed ID: 25826469 [TBL] [Abstract][Full Text] [Related]
13. Membrane structure of the human immunodeficiency virus gp41 fusion peptide by molecular dynamics simulation. II. The glycine mutants. Wong TC Biochim Biophys Acta; 2003 Jan; 1609(1):45-54. PubMed ID: 12507757 [TBL] [Abstract][Full Text] [Related]
14. Conformational study of fragments of envelope proteins (gp120: 254-274 and gp41: 519-541) of HIV-1 by NMR and MD simulations. Kanyalkar M; Srivastava S; Saran A; Coutinho E J Pept Sci; 2004 Jun; 10(6):363-80. PubMed ID: 15214441 [TBL] [Abstract][Full Text] [Related]
15. Functional and structural characterization of HIV-1 gp41 ectodomain regions in phospholipid membranes suggests that the fusion-active conformation is extended. Korazim O; Sackett K; Shai Y J Mol Biol; 2006 Dec; 364(5):1103-17. PubMed ID: 17045292 [TBL] [Abstract][Full Text] [Related]
16. Conformational mapping of the N-terminal peptide of HIV-1 gp41 in membrane environments using (13)C-enhanced Fourier transform infrared spectroscopy. Gordon LM; Mobley PW; Pilpa R; Sherman MA; Waring AJ Biochim Biophys Acta; 2002 Feb; 1559(2):96-120. PubMed ID: 11853678 [TBL] [Abstract][Full Text] [Related]
17. Solid-state nuclear magnetic resonance studies of HIV and influenza fusion peptide orientations in membrane bilayers using stacked glass plate samples. Wasniewski CM; Parkanzky PD; Bodner ML; Weliky DP Chem Phys Lipids; 2004 Nov; 132(1):89-100. PubMed ID: 15530451 [TBL] [Abstract][Full Text] [Related]
18. 13C-13C and (15)N-(13)C correlation spectroscopy of membrane-associated and uniformly labeled human immunodeficiency virus and influenza fusion peptides: amino acid-type assignments and evidence for multiple conformations. Bodner ML; Gabrys CM; Struppe JO; Weliky DP J Chem Phys; 2008 Feb; 128(5):052319. PubMed ID: 18266436 [TBL] [Abstract][Full Text] [Related]
19. A molecular model for membrane fusion based on solution studies of an amphiphilic peptide from HIV gp41. Fujii G; Horvath S; Woodward S; Eiserling F; Eisenberg D Protein Sci; 1992 Nov; 1(11):1454-64. PubMed ID: 1303764 [TBL] [Abstract][Full Text] [Related]
20. Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. Grasnick D; Sternberg U; Strandberg E; Wadhwani P; Ulrich AS Eur Biophys J; 2011 Apr; 40(4):529-43. PubMed ID: 21274707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]