These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 22892525)

  • 41. Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: effect of particle concentration, NAPL saturation, and injection strategy.
    Phenrat T; Fagerlund F; Illangasekare T; Lowry GV; Tilton RD
    Environ Sci Technol; 2011 Jul; 45(14):6102-9. PubMed ID: 21678951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.
    Cheng Z; Gao B; Xu H; Sun Y; Shi X; Wu J
    Sci Total Environ; 2016 Nov; 571():1147-54. PubMed ID: 27450259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygenated gasoline release in the unsaturated zone, Part 2: Downgradient transport of ethanol and hydrocarbons.
    Freitas JG; Doulatyari B; Molson JW; Barker JF
    J Contam Hydrol; 2011 Jul; 125(1-4):70-85. PubMed ID: 21652105
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Remediation of NAPL source zones: lessons learned from field studies at Hill and Dover AFB.
    McCray JE; Tick GR; Jawitz JW; Gierke JS; Brusseau ML; Falta RW; Knox RC; Sabatini DA; Annable MD; Harwell JH; Wood AL
    Ground Water; 2011; 49(5):727-44. PubMed ID: 21299555
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging.
    Zhang C; Werth CJ; Webb AG
    J Contam Hydrol; 2008 Sep; 100(3-4):116-26. PubMed ID: 18676059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.
    Lenhard RJ; Oostrom M; Dane JH
    J Contam Hydrol; 2004 Sep; 73(1-4):283-304. PubMed ID: 15614970
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field.
    Saba T; Illangasekare TH; Ewing J
    J Contam Hydrol; 2001 Sep; 51(1-2):63-82. PubMed ID: 11530927
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of reactive fronts during transport in a homogeneous porous medium with initial small non-uniformity.
    Chen JS; Liu CW
    J Contam Hydrol; 2004 Aug; 72(1-4):47-66. PubMed ID: 15240166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental investigation of the influence of grain geometry on residual NAPL using synchrotron microtomography.
    Al-Raoush RI
    J Contam Hydrol; 2014 Apr; 159():1-10. PubMed ID: 24534446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modelling the dissolution of non-aqueous phase liquid blobs in sphere packings.
    Dalla E; Hilpert M; Miller C; Pitea D
    Ann Chim; 2003; 93(7-8):631-8. PubMed ID: 12940596
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations.
    Ramezanzadeh M; Aminnaji M; Rezanezhad F; Ghazanfari MH; Babaei M
    Chemosphere; 2022 Feb; 289():133177. PubMed ID: 34890610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measured mass transfer coefficients in porous media using specific interfacial area.
    Cho J; Annable MD; Rao PS
    Environ Sci Technol; 2005 Oct; 39(20):7883-8. PubMed ID: 16295851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media.
    Chen H; Gao B; Li H; Ma LQ
    J Contam Hydrol; 2011 Sep; 126(1-2):29-36. PubMed ID: 21775014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of NAPL-water interfacial areas in well-characterized porous media.
    Dobson R; Schroth MH; Oostrom M; Zeyer J
    Environ Sci Technol; 2006 Feb; 40(3):815-22. PubMed ID: 16509323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic.
    Vencelides Z; Sracek O; Prommer H
    J Contam Hydrol; 2007 Jan; 89(3-4):270-94. PubMed ID: 17070964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux.
    Padgett MC; Tick GR; Carroll KC; Burke WR
    J Contam Hydrol; 2017 Mar; 198():11-23. PubMed ID: 28202180
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-component reactive transport in heterogeneous media and its decoupling solution.
    Huo JX; Song HZ; Wu ZW
    J Contam Hydrol; 2014 Oct; 166():11-22. PubMed ID: 25123631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone.
    Amos BK; Suchomel EJ; Pennell KD; Löffler FE
    Water Res; 2008 Jun; 42(12):2963-74. PubMed ID: 18462771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution.
    Gouze P; Luquot L
    J Contam Hydrol; 2011 Mar; 120-121():45-55. PubMed ID: 20797806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.