These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22892655)

  • 41. The story behind Bt cotton: where does Sudan stand?
    Abdallah NA
    GM Crops Food; 2014; 5(4):241-3. PubMed ID: 25523169
    [No Abstract]   [Full Text] [Related]  

  • 42. Bt maize and integrated pest management--a European perspective.
    Meissle M; Romeis J; Bigler F
    Pest Manag Sci; 2011 Sep; 67(9):1049-58. PubMed ID: 21710684
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modelling the spatial configuration of refuges for a sustainable control of pests: a case study of Bt cotton.
    Vacher C; Bourguet D; Rousset F; Chevillon C; Hochberg ME
    J Evol Biol; 2003 May; 16(3):378-87. PubMed ID: 14635838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution.
    Zhao JZ; Cao J; Li Y; Collins HL; Roush RT; Earle ED; Shelton AM
    Nat Biotechnol; 2003 Dec; 21(12):1493-7. PubMed ID: 14608363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current situation of pests targeted by Bt crops in Latin America.
    Blanco CA; Chiaravalle W; Dalla-Rizza M; Farias JR; García-Degano MF; Gastaminza G; Mota-Sánchez D; Murúa MG; Omoto C; Pieralisi BK; Rodríguez J; Rodríguez-Maciel JC; Terán-Santofimio H; Terán-Vargas AP; Valencia SJ; Willink E
    Curr Opin Insect Sci; 2016 Jun; 15():131-8. PubMed ID: 27436743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests.
    Betz FS; Hammond BG; Fuchs RL
    Regul Toxicol Pharmacol; 2000 Oct; 32(2):156-73. PubMed ID: 11067772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.
    Pardo-López L; Soberón M; Bravo A
    FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers.
    Hutchison WD; Burkness EC; Mitchell PD; Moon RD; Leslie TW; Fleischer SJ; Abrahamson M; Hamilton KL; Steffey KL; Gray ME; Hellmich RL; Kaster LV; Hunt TE; Wright RJ; Pecinovsky K; Rabaey TL; Flood BR; Raun ES
    Science; 2010 Oct; 330(6001):222-5. PubMed ID: 20929774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Risk assessment of Bt crops on the non-target plant-associated insects and soil organisms.
    Yaqoob A; Shahid AA; Samiullah TR; Rao AQ; Khan MA; Tahir S; Mirza SA; Husnain T
    J Sci Food Agric; 2016 Jun; 96(8):2613-9. PubMed ID: 26857894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field-evolved resistance to Bt toxins.
    Moar W; Roush R; Shelton A; Ferré J; MacIntosh S; Leonard BR; Abel C
    Nat Biotechnol; 2008 Oct; 26(10):1072-4; author reply 1074-6. PubMed ID: 18846068
    [No Abstract]   [Full Text] [Related]  

  • 51. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved.
    Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP
    J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decaplex and real-time PCR based detection of MON531 and MON15985 Bt cotton events.
    Randhawa GJ; Chhabra R; Singh M
    J Agric Food Chem; 2010 Sep; 58(18):9875-81. PubMed ID: 20687600
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Field-evolved resistance: assessing the problem and ways to move forward.
    Sumerford DV; Head GP; Shelton A; Greenplate J; Moar W
    J Econ Entomol; 2013 Aug; 106(4):1525-34. PubMed ID: 24020262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control.
    Roh JY; Choi JY; Li MS; Jin BR; Je YH
    J Microbiol Biotechnol; 2007 Apr; 17(4):547-59. PubMed ID: 18051264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plant fitness assessment for wild relatives of insect resistant crops.
    Letourneau DK; Hagen JA
    Environ Biosafety Res; 2009; 8(1):45-55. PubMed ID: 19419653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Success of microbial genes based transgenic crops: Bt and beyond Bt.
    Tilgam J; Kumar K; Jayaswal D; Choudhury S; Kumar A; Jayaswall K; Saxena AK
    Mol Biol Rep; 2021 Dec; 48(12):8111-8122. PubMed ID: 34716867
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemistry and genetics of insect resistance to Bacillus thuringiensis.
    Ferré J; Van Rie J
    Annu Rev Entomol; 2002; 47():501-33. PubMed ID: 11729083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pest insect control in organically-produced crops of field vegetables.
    Collier RH; Finch S; Davies G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):259-67. PubMed ID: 12425046
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Entomology. First light on genetic roots of Bt resistance.
    Stokstad E
    Science; 2001 Aug; 293(5531):778. PubMed ID: 11486062
    [No Abstract]   [Full Text] [Related]  

  • 60. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China.
    Lu Y; Wu K; Jiang Y; Xia B; Li P; Feng H; Wyckhuys KA; Guo Y
    Science; 2010 May; 328(5982):1151-4. PubMed ID: 20466880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.