These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 22892800)
21. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening. Li M; Zhang X Bull Environ Contam Toxicol; 2021 Aug; 107(2):194-205. PubMed ID: 32939593 [TBL] [Abstract][Full Text] [Related]
22. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Amine A; Mohammadi H; Bourais I; Palleschi G Biosens Bioelectron; 2006 Feb; 21(8):1405-23. PubMed ID: 16125923 [TBL] [Abstract][Full Text] [Related]
23. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. Xu ML; Gao Y; Han XX; Zhao B J Agric Food Chem; 2017 Aug; 65(32):6719-6726. PubMed ID: 28726388 [TBL] [Abstract][Full Text] [Related]
24. Exonuclease I-aided homogeneous electrochemical strategy for organophosphorus pesticide detection based on enzyme inhibition integrated with a DNA conformational switch. Wang X; Dong S; Hou T; Liu L; Liu X; Li F Analyst; 2016 Mar; 141(5):1830-6. PubMed ID: 26839920 [TBL] [Abstract][Full Text] [Related]
25. Sonochemically fabricated enzyme microelectrode arrays for the environmental monitoring of pesticides. Pritchard J; Law K; Vakurov A; Millner P; Higson SP Biosens Bioelectron; 2004 Nov; 20(4):765-72. PubMed ID: 15522591 [TBL] [Abstract][Full Text] [Related]
26. Acetylecholinesterase-based biosensor electrodes for organophosphate pesticide detection. II. Immobilization and stabilization of acetylecholinesterase. Vakurov A; Simpson CE; Daly CL; Gibson TD; Millner PA Biosens Bioelectron; 2005 May; 20(11):2324-9. PubMed ID: 15797334 [TBL] [Abstract][Full Text] [Related]
27. Recent advances in biosensors based on enzyme inhibition. Amine A; Arduini F; Moscone D; Palleschi G Biosens Bioelectron; 2016 Feb; 76():180-94. PubMed ID: 26227311 [TBL] [Abstract][Full Text] [Related]
28. Optical microsensors for pesticides identification based on porous silicon technology. Rotiroti L; De Stefano L; Rendina I; Moretti L; Rossi AM; Piccolo A Biosens Bioelectron; 2005 Apr; 20(10):2136-9. PubMed ID: 15741087 [TBL] [Abstract][Full Text] [Related]
29. Emerging vistas on pesticides detection based on electrochemical biosensors - An update. Jain U; Saxena K; Hooda V; Balayan S; Singh AP; Tikadar M; Chauhan N Food Chem; 2022 Mar; 371():131126. PubMed ID: 34583176 [TBL] [Abstract][Full Text] [Related]
30. Pesticide Aptasensors-State of the Art and Perspectives. Phopin K; Tantimongcolwat T Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260648 [TBL] [Abstract][Full Text] [Related]
31. Nanobiosensors based on on-site detection approaches for rapid pesticide sensing in the agricultural arena: A systematic review of the current status and perspectives. Srinivasan S; Raajasubramanian D; Ashokkumar N; Vinothkumar V; Paramaguru N; Selvaraj P; Kanagalakshimi A; Narendra K; Shanmuga Sundaram CK; Murali R Biotechnol Bioeng; 2024 Sep; 121(9):2585-2603. PubMed ID: 38853643 [TBL] [Abstract][Full Text] [Related]
32. Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides. Xia N; Wang Q; Liu L Sensors (Basel); 2014 Dec; 15(1):499-514. PubMed ID: 25558991 [TBL] [Abstract][Full Text] [Related]
33. New platform of biosensors for prescreening of pesticide residues to support laboratory analyses. Buonasera K; Pezzotti G; Scognamiglio V; Tibuzzi A; Giardi MT J Agric Food Chem; 2010 May; 58(10):5982-90. PubMed ID: 20020685 [TBL] [Abstract][Full Text] [Related]
34. Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Du D; Huang X; Cai J; Zhang A Biosens Bioelectron; 2007 Sep; 23(2):285-9. PubMed ID: 17590326 [TBL] [Abstract][Full Text] [Related]
35. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Majdinasab M; Daneshi M; Louis Marty J Talanta; 2021 Sep; 232():122397. PubMed ID: 34074393 [TBL] [Abstract][Full Text] [Related]
36. Contributions of pesticide residue chemistry to improving food and environmental safety: past and present accomplishments and future challenges. Seiber JN; Kleinschmidt LA J Agric Food Chem; 2011 Jul; 59(14):7536-43. PubMed ID: 21473621 [TBL] [Abstract][Full Text] [Related]
37. Enzyme-based optical biosensors for organophosphate class of pesticide detection. Kaur J; Singh PK Phys Chem Chem Phys; 2020 Jul; 22(27):15105-15119. PubMed ID: 32613964 [TBL] [Abstract][Full Text] [Related]
38. Biosensors for the analysis of microbiological and chemical contaminants in food. McGrath TF; Elliott CT; Fodey TL Anal Bioanal Chem; 2012 Apr; 403(1):75-92. PubMed ID: 22278073 [TBL] [Abstract][Full Text] [Related]
39. Pesticide detection with a liposome-based nano-biosensor. Vamvakaki V; Chaniotakis NA Biosens Bioelectron; 2007 Jun; 22(12):2848-53. PubMed ID: 17223333 [TBL] [Abstract][Full Text] [Related]
40. Enzyme-Based Ultrasensitive Electrochemical Biosensors for Rapid Assessment of Nitrite Toxicity: Recent Advances and Perspectives. Gahlaut A; Hooda V; Gothwal A; Hooda V Crit Rev Anal Chem; 2019; 49(1):32-43. PubMed ID: 29757672 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]