These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 22892882)
1. Biomimetic synthesis of silica nanostructures with controllable morphologies and sizes through tuning interfacial interactions. Wang S; Xue J; Ge X; Fan H; Xu H; Lu JR Chem Commun (Camb); 2012 Sep; 48(75):9415-7. PubMed ID: 22892882 [TBL] [Abstract][Full Text] [Related]
2. One-step synthesis of water dispersible silica nanoplates. Chen H; Xia L; Fu W; Yang Z; Li Z Chem Commun (Camb); 2013 Feb; 49(13):1300-2. PubMed ID: 23296320 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of 1D Silica Nanostructures with Controllable Sizes Based on Short Anionic Peptide Self-Assembly. Wang S; Cai Q; Du M; Xue J; Xu H J Phys Chem B; 2015 Sep; 119(36):12059-65. PubMed ID: 26301578 [TBL] [Abstract][Full Text] [Related]
4. Poly(L-lysine)-mediated biomimetic silica synthesis: effects of mixing sequences and counterion concentrations. Xia L; Li Z Langmuir; 2011 Feb; 27(3):1116-22. PubMed ID: 21189008 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell. Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic growth of silica tubes in confined media. Gautier C; Lopez PJ; Hemadi M; Livage J; Coradin T Langmuir; 2006 Oct; 22(22):9092-5. PubMed ID: 17042515 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic chitosan-mediated synthesis in heterogeneous phase of bulk and mesoporous silica nanoparticles. Puchol V; El Haskouri J; Latorre J; Guillem C; Beltrán A; Beltrán D; Amorós P Chem Commun (Camb); 2009 May; (19):2694-6. PubMed ID: 19532924 [TBL] [Abstract][Full Text] [Related]
14. Silica particle formation in confined environments via bioinspired polyamine catalysis at near-neutral pH. Bauer CA; Robinson DB; Simmons BA Small; 2007 Jan; 3(1):58-62. PubMed ID: 17294469 [No Abstract] [Full Text] [Related]
15. Onion phases as biomimetic confined media for silica nanoparticle growth. El Rassy H; Belamie E; Livage J; Coradin T Langmuir; 2005 Sep; 21(19):8584-7. PubMed ID: 16142930 [TBL] [Abstract][Full Text] [Related]
16. Modification of the Stöber process by a polyazamacrocycle leading to unusual core-shell silica nanoparticles. Masse S; Laurent G; Chuburu F; Cadiou C; Déchamps I; Coradin T Langmuir; 2008 Apr; 24(8):4026-31. PubMed ID: 18303930 [TBL] [Abstract][Full Text] [Related]
17. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500 [TBL] [Abstract][Full Text] [Related]
18. Degradable nanogels as a nanoreactor for growing silica colloids. Li YY; Yang J; Wu WB; Zhang XZ; Zhuo RX Langmuir; 2009 Feb; 25(4):1923-6. PubMed ID: 19199750 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles. Sun J; Zhang H; Tian R; Ma D; Bao X; Su DS; Zou H Chem Commun (Camb); 2006 Mar; (12):1322-4. PubMed ID: 16538261 [TBL] [Abstract][Full Text] [Related]
20. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. Dong W; Sun Y; Lee CW; Hua W; Lu X; Shi Y; Zhang S; Chen J; Zhao D J Am Chem Soc; 2007 Nov; 129(45):13894-904. PubMed ID: 17941637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]