BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22892884)

  • 1. Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production.
    Reis VC; Nicola AM; de Souza Oliveira Neto O; Batista VD; de Moraes LM; Torres FA
    J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1673-83. PubMed ID: 22892884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production.
    Argueso JL; Carazzolle MF; Mieczkowski PA; Duarte FM; Netto OV; Missawa SK; Galzerani F; Costa GG; Vidal RO; Noronha MF; Dominska M; Andrietta MG; Andrietta SR; Cunha AF; Gomes LH; Tavares FC; Alcarde AR; Dietrich FS; McCusker JH; Petes TD; Pereira GA
    Genome Res; 2009 Dec; 19(12):2258-70. PubMed ID: 19812109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1.
    Babrzadeh F; Jalili R; Wang C; Shokralla S; Pierce S; Robinson-Mosher A; Nyren P; Shafer RW; Basso LC; de Amorim HV; de Oliveira AJ; Davis RW; Ronaghi M; Gharizadeh B; Stambuk BU
    Mol Genet Genomics; 2012 Jun; 287(6):485-94. PubMed ID: 22562254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation.
    Carvalho-Netto OV; Carazzolle MF; Rodrigues A; Bragança WO; Costa GG; Argueso JL; Pereira GA
    J Biotechnol; 2013 Dec; 168(4):701-9. PubMed ID: 23994268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Cre-lox and CRISPR-Cas9 as tools for recycling of multiple-integrated selection markers in Saccharomyces cerevisiae.
    Moon HY; Sim GH; Kim HJ; Kim K; Kang HA
    J Microbiol; 2022 Jan; 60(1):18-30. PubMed ID: 34964942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Brazilian bioethanol production - Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process.
    Paulino de Souza J; Dias do Prado C; Eleutherio ECA; Bonatto D; Malavazi I; Ferreira da Cunha A
    Fungal Biol; 2018 Jun; 122(6):583-591. PubMed ID: 29801803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation.
    da Silva Filho EA; de Melo HF; Antunes DF; dos Santos SK; do Monte Resende A; Simões DA; de Morais MA
    J Ind Microbiol Biotechnol; 2005 Oct; 32(10):481-6. PubMed ID: 16175407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic characterization and modification of a bioethanol-producing yeast strain.
    Zhang K; Di YN; Qi L; Sui Y; Wang TY; Fan L; Lv ZM; Wu XC; Wang PM; Zheng DQ
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2213-2223. PubMed ID: 29333587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellite marker-based assessment of the biodiversity of native bioethanol yeast strains.
    Antonangelo AT; Alonso DP; Ribolla PE; Colombi D
    Yeast; 2013 Aug; 30(8):307-17. PubMed ID: 23765797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotypic and phenotypic characterization of industrial autochthonous Saccharomyces cerevisiae for the selection of well-adapted bioethanol-producing strains.
    Canseco Grellet MA; Dantur KI; Perera MF; Ahmed PM; Castagnaro A; Arroyo-Lopez FN; Gallego JB; Welin B; Ruiz RM
    Fungal Biol; 2022 Oct; 126(10):658-673. PubMed ID: 36116898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and characterization of centromeric, episomal and GFP-containing vectors for Saccharomyces cerevisiae prototrophic strains.
    Baruffini E; Serafini F; Lodi T
    J Biotechnol; 2009 Sep; 143(4):247-54. PubMed ID: 19683551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scientific challenges of bioethanol production in Brazil.
    Amorim HV; Lopes ML; de Castro Oliveira JV; Buckeridge MS; Goldman GH
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1267-75. PubMed ID: 21735264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving ethanol production problems with genetically modified yeast strains.
    Abreu-Cavalheiro A; Monteiro G
    Braz J Microbiol; 2013; 44(3):665-71. PubMed ID: 24516432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae.
    Taxis C; Knop M
    Biotechniques; 2006 Jan; 40(1):73-8. PubMed ID: 16454043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.
    Zhang K; Tong M; Gao K; Di Y; Wang P; Zhang C; Wu X; Zheng D
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):207-18. PubMed ID: 25475753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease.
    Zhang GC; Kong II; Kim H; Liu JJ; Cate JH; Jin YS
    Appl Environ Microbiol; 2014 Dec; 80(24):7694-701. PubMed ID: 25281382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Versatile Toolset for Genetic Manipulation of the Wine Yeast
    Heinisch JJ; Murra A; Jürgens K; Schmitz HP
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768181
    [No Abstract]   [Full Text] [Related]  

  • 19. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.