These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 22893436)
41. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions. Wei Z; Wang C; Liu H; Zou S; Tong Z Colloids Surf B Biointerfaces; 2012 Mar; 91():97-105. PubMed ID: 22088755 [TBL] [Abstract][Full Text] [Related]
42. Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. Nath SD; Son S; Sadiasa A; Min YK; Lee BT Int J Pharm; 2013 Feb; 443(1-2):87-94. PubMed ID: 23291448 [TBL] [Abstract][Full Text] [Related]
43. Pluronic F127 gel effectively controls the burst release of drug from PLGA microspheres. Wang Y; Gao JQ; Chen HL; Zheng CH; Liang WQ Pharmazie; 2006 Apr; 61(4):367-8. PubMed ID: 16649559 [TBL] [Abstract][Full Text] [Related]
44. Electrospray synthesis of monodisperse polymer particles in a broad (60 nm-2 μm) diameter range: guiding principles and formulation recipes. Almería B; Gomez A J Colloid Interface Sci; 2014 Mar; 417():121-30. PubMed ID: 24407667 [TBL] [Abstract][Full Text] [Related]
46. Controlled release of bioactive doxorubicin from microspheres embedded within gelatin scaffolds. Defail AJ; Edington HD; Matthews S; Lee WC; Marra KG J Biomed Mater Res A; 2006 Dec; 79(4):954-62. PubMed ID: 16941588 [TBL] [Abstract][Full Text] [Related]
47. A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles. Sun J; Xianyu Y; Li M; Liu W; Zhang L; Liu D; Liu C; Hu G; Jiang X Nanoscale; 2013 Jun; 5(12):5262-5. PubMed ID: 23652785 [TBL] [Abstract][Full Text] [Related]
48. The production of uniformly sized polymer microspheres. Amsden B Pharm Res; 1999 Jul; 16(7):1140-3. PubMed ID: 10450945 [No Abstract] [Full Text] [Related]
49. Engineering polymeric microparticles as theranostic carriers for selective delivery and cancer therapy. Win KY; Ye E; Teng CP; Jiang S; Han MY Adv Healthc Mater; 2013 Dec; 2(12):1571-5. PubMed ID: 23712912 [TBL] [Abstract][Full Text] [Related]
50. A smart, phase transitional and injectable DOX/PLGA-Fe implant for magnetic-hyperthermia-induced synergistic tumor eradication. Gao W; Zheng Y; Wang R; Chen H; Cai X; Lu G; Chu L; Xu C; Zhang N; Wang Z; Ran H; Li P; Yang C; Mei Z; Song J Acta Biomater; 2016 Jan; 29():298-306. PubMed ID: 26432438 [TBL] [Abstract][Full Text] [Related]
51. Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia. Lu F; Popa A; Zhou S; Zhu JJ; Samia AC Chem Commun (Camb); 2013 Dec; 49(97):11436-8. PubMed ID: 24169596 [TBL] [Abstract][Full Text] [Related]
52. The effect of cryoprotection on the use of PLGA encapsulated iron oxide nanoparticles for magnetic cell labeling. Tang KS; Hashmi SM; Shapiro EM Nanotechnology; 2013 Mar; 24(12):125101. PubMed ID: 23459030 [TBL] [Abstract][Full Text] [Related]
53. Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique. Onuki Y; Jacobs I; Artemov D; Kato Y Biomaterials; 2010 Sep; 31(27):7132-8. PubMed ID: 20580427 [TBL] [Abstract][Full Text] [Related]
54. Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin. Orel V; Shevchenko A; Romanov A; Tselepi M; Mitrelias T; Barnes CH; Burlaka A; Lukin S; Shchepotin I Nanomedicine; 2015 Jan; 11(1):47-55. PubMed ID: 25101880 [TBL] [Abstract][Full Text] [Related]
55. Magnetic studies of polylactic- Mosiniewicz-Szablewska E; Tedesco AC; Suchocki P; Morais PC Phys Chem Chem Phys; 2020 Sep; 22(37):21042-21058. PubMed ID: 32926060 [TBL] [Abstract][Full Text] [Related]
56. Synthetic micro/nanomotors in drug delivery. Gao W; Wang J Nanoscale; 2014 Sep; 6(18):10486-94. PubMed ID: 25096021 [TBL] [Abstract][Full Text] [Related]
57. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin. Newland B; Leupelt D; Zheng Y; Thomas LS; Werner C; Steinhart M; Wang W Sci Rep; 2015 Dec; 5():17478. PubMed ID: 26619814 [TBL] [Abstract][Full Text] [Related]
58. Magnetic drug targeting during Caputo-Fabrizio fractionalized blood flow through a permeable vessel. Moitoi AJ; Shaw S Microvasc Res; 2022 Jan; 139():104262. PubMed ID: 34656560 [TBL] [Abstract][Full Text] [Related]
59. Photocaged permeability: a new strategy for controlled drug release. Dcona MM; Mitra D; Goehe RW; Gewirtz DA; Lebman DA; Hartman MC Chem Commun (Camb); 2012 May; 48(39):4755-7. PubMed ID: 22473358 [TBL] [Abstract][Full Text] [Related]
60. Magnetic Field-Responsive Pulsatile Drug Release Using A Magnetic Fluid. Takei C; Mori K; Oshizaka T; Sugibayashi K Chem Pharm Bull (Tokyo); 2022; 70(1):50-51. PubMed ID: 34980733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]