These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22893732)

  • 1. High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique.
    Yuan B; Uchiyama S; Liu Y; Nguyen KT; Alexandrakis G
    Appl Phys Lett; 2012 Jul; 101(3):33703. PubMed ID: 22893732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Ultrasound-Switchable FRET-Based Liposomes for Near-Infrared Fluorescence Imaging in Optically Turbid Media.
    Zhang Q; Morgan SP; Mather ML
    Small; 2017 Sep; 13(33):. PubMed ID: 28692762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound-mediation of self-illuminating reporters improves imaging resolution in optically scattering media.
    Ahmad J; Jayet B; Hill PJ; Mather ML; Dehghani H; Morgan SP
    Biomed Opt Express; 2018 Apr; 9(4):1664-1679. PubMed ID: 29675309
    [No Abstract]   [Full Text] [Related]  

  • 5. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.
    Cheng B; Bandi V; Wei MY; Pei Y; D'Souza F; Nguyen KT; Hong Y; Yuan B
    PLoS One; 2016; 11(11):e0165963. PubMed ID: 27829050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical investigation of ultrasound-modulated Cerenkov luminescence imaging for higher-resolution imaging in turbid media.
    Klein JS; Mitchell GS; Stephens DN; Cherry SR
    Opt Lett; 2018 Aug; 43(15):3509-3512. PubMed ID: 30067696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking the acoustic diffraction limit via nonlinear effect and thermal confinement for potential deep-tissue high-resolution imaging.
    Yuan B; Pei Y; Kandukuri J
    Appl Phys Lett; 2013 Feb; 102(6):63703. PubMed ID: 23479498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon focal modulation microscopy for high-resolution imaging in deep tissue.
    Zheng Y; Chen J; Shi X; Zhu X; Wang J; Huang L; Si K; Sheppard CJR; Gong W
    J Biophotonics; 2019 Jan; 12(1):e201800247. PubMed ID: 30255623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-penetration fluorescence imaging through dense yeast cells suspensions using Airy beams.
    Nagar H; Roichman Y
    Opt Lett; 2019 Apr; 44(8):1896-1899. PubMed ID: 30985769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limiting Factors on Image Quality in Imaging through Turbid Media under Single-photon and Two-photon Excitation.
    Schilders SP; Gu M
    Microsc Microanal; 2000 Mar; 6(2):156-160. PubMed ID: 10742403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of ultrasound-switchable fluorescence for improving signal-to-noise ratio.
    Kandukuri J; Yu S; Yao T; Yuan B
    J Biomed Opt; 2017 Jul; 22(7):76021. PubMed ID: 28759677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scattered light fluorescence microscopy: imaging through turbid layers.
    Vellekoop IM; Aegerter CM
    Opt Lett; 2010 Apr; 35(8):1245-7. PubMed ID: 20410981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media.
    Wang L; Zhao X
    Appl Opt; 1997 Oct; 36(28):7277-82. PubMed ID: 18264237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study of high spatial resolution multimodality fluorescence tomography in ex vivo biological tissue.
    Kwong TC; Nouizi F; Cho J; Lin Y; Sampathkumaran U; Gulsen G
    Appl Opt; 2017 Oct; 56(28):7886-7891. PubMed ID: 29047774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging.
    Kanick SC; McClatchy DM; Krishnaswamy V; Elliott JT; Paulsen KD; Pogue BW
    Biomed Opt Express; 2014 Oct; 5(10):3376-90. PubMed ID: 25360357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Characterization of a Switchable Acoustic Resolution and Optical Resolution Photoacoustic Microscopy System.
    Moothanchery M; Pramanik M
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance.
    Kolste KK; Kanick SC; Valdés PA; Jermyn M; Wilson BC; Roberts DW; Paulsen KD; Leblond F
    J Biomed Opt; 2015 Feb; 20(2):26002. PubMed ID: 25652704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging.
    Kandukuri J; Yu S; Cheng B; Bandi V; D'Souza F; Nguyen KT; Hong Y; Yuan B
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28165390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging.
    Liu RL; Cai RQ
    J Pharm Anal; 2022 Aug; 12(4):530-540. PubMed ID: 36105171
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.