These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22894098)

  • 1. Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas.
    Xie J; Yan N; Qu Z; Yang S
    J Environ Sci (China); 2012; 24(4):640-4. PubMed ID: 22894098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.
    Goel C; Bhunia H; Bajpai PK
    J Environ Sci (China); 2015 Jun; 32():238-48. PubMed ID: 26040750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and numerical study of SO
    Wang H; Bai JQ; Yin Y; Wang SF
    J Mol Graph Model; 2020 May; 96():107533. PubMed ID: 31978827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.
    Wang J; Krishna R; Yang J; Deng S
    Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-doped mesoporous alumina for adsorption of carbon dioxide.
    Thote JA; Chatti RV; Iyer KS; Kumar V; Valechha AN; Labhsetwar NK; Biniwale RB; Yenkie MK; Rayalu SS
    J Environ Sci (China); 2012; 24(11):1979-84. PubMed ID: 23534232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption separation of carbon dioxide from flue gas by a molecularly imprinted adsorbent.
    Zhao Y; Shen Y; Ma G; Hao R
    Environ Sci Technol; 2014; 48(3):1601-8. PubMed ID: 24410306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capture of carbon dioxide from flue gas on TEPA-grafted metal-organic framework Mg2(dobdc).
    Cao Y; Song F; Zhao Y; Zhong Q
    J Environ Sci (China); 2013 Oct; 25(10):2081-7. PubMed ID: 24494495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Competitive Inclusion of CO
    Choi W; Lee Y; Mok J; Seo Y
    Environ Sci Technol; 2020 Jun; 54(12):7562-7569. PubMed ID: 32441519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO₂ capture from flue gas.
    Rezaei F; Lively RP; Labreche Y; Chen G; Fan Y; Koros WJ; Jones CW
    ACS Appl Mater Interfaces; 2013 May; 5(9):3921-31. PubMed ID: 23540568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-rich syngas upgrading via CO
    Yan M; Zhang Y; Zhu G; Kong X; Cang T; Wang D; Wibowo H; Kanchanatip E
    Environ Sci Pollut Res Int; 2024 May; 31(24):35979-35991. PubMed ID: 38744769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].
    Yang MF; Fang MX; Zhang WF; Wang SY; Xu ZK; Luo ZY; Cen KF
    Huan Jing Ke Xue; 2005 Jul; 26(4):24-9. PubMed ID: 16212162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of rice husk silica as adsorbent for BTEX passive air sampler under high humidity condition.
    Areerob T; Grisdanurak N; Chiarakorn S
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5538-48. PubMed ID: 26573315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of bioactive chamazulene from chamomile extract using metal-organic framework.
    Abdelhameed RM; Abdel-Gawad H; Taha M; Hegazi B
    J Pharm Biomed Anal; 2017 Nov; 146():126-134. PubMed ID: 28869815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2.
    Sawant SY; Somani RS; Bajaj HC; Sharma SS
    J Hazard Mater; 2012 Aug; 227-228():317-26. PubMed ID: 22682801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of copper-1,3,5-benzenetricarboxylate metal-organic framework (Cu-MOF) as a selective sorbent for Lewis-base analytes.
    Harvey SD; Eckberg AD; Thallapally PK
    J Sep Sci; 2011 Sep; 34(18):2418-26. PubMed ID: 21812111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Zn-Cu bimetallic metal-organic frameworks for carbon dioxide capture.
    Li X; Li S; Liu J; Zhang J; Ren Y; Zhao J
    RSC Adv; 2024 Jun; 14(29):20780-20785. PubMed ID: 38952934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capture of CO2 on γ-Al2O3 materials prepared by solution-combustion and ball-milling processes.
    Granados-Correa F; Bonifacio-Martínez J; Hernández-Mendoza H; Bulbulian S
    J Air Waste Manag Assoc; 2016 Jul; 66(7):643-54. PubMed ID: 26962673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework.
    Wu X; Yuan B; Bao Z; Deng S
    J Colloid Interface Sci; 2014 Sep; 430():78-84. PubMed ID: 24998057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetallic Copper-Cerium-Based Metal-Organic Frameworks for Selective Carbon Dioxide Capture.
    Jampaiah D; Shah D; Chalkidis A; Saini P; Babarao R; Arandiyan H; Bhargava SK
    Langmuir; 2024 May; 40(18):9732-9740. PubMed ID: 38668749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and application of Cu-BTC@ZSM-5 composites as effective adsorbents for removal of toluene gas under moist ambience: kinetics, thermodynamics, and mechanism studies.
    Li M; Li Y; Li W; Liu F; Qi X; Xue M; Wang Y; Zhao C
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6052-6065. PubMed ID: 31865572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.