These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22894195)

  • 1. The effect of static pressure on the inertial cavitation threshold.
    Bader KB; Raymond JL; Mobley J; Church CC; Felipe Gaitan D
    J Acoust Soc Am; 2012 Aug; 132(2):728-37. PubMed ID: 22894195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of static pressure on the strength of inertial cavitation events.
    Bader KB; Mobley J; Church CC; Gaitan DF
    J Acoust Soc Am; 2012 Oct; 132(4):2286-91. PubMed ID: 23039425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress.
    Wu T; Farny CH; Roy RA; Holt RG
    J Acoust Soc Am; 2011 Nov; 130(5):3252-63. PubMed ID: 22087997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient cavitation in high-quality-factor resonators at high static pressures.
    Gaitan DF; Tessien RA; Hiller RA; Gutierrez J; Scott C; Tardif H; Callahan B; Matula TJ; Crum LA; Holt RG; Church CC; Raymond JL
    J Acoust Soc Am; 2010 Jun; 127(6):3456-65. PubMed ID: 20550245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam.
    Manzi NJ; Chitnis PV; Holt RG; Roy RA; Cleveland RO; Riemer B; Wendel M
    J Acoust Soc Am; 2010 Apr; 127(4):2231-9. PubMed ID: 20370004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature on rectified diffusion during ultrasound-induced heating.
    Webb IR; Payne SJ; Coussios CC
    J Acoust Soc Am; 2011 Nov; 130(5):3450-7. PubMed ID: 22088019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field.
    Hodnett M; Zeqiri B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of temperature and viscoelasticity on cavitation dynamics during ultrasonic ablation.
    Webb IR; Payne SJ; Coussios CC
    J Acoust Soc Am; 2011 Nov; 130(5):3458-66. PubMed ID: 22088020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical characterisation of sonochemical cells. Part 2: cell disruptors (Ultrasonic horns) and cavity cluster collapse.
    Birkin PR; Offin DG; Leighton TG
    Phys Chem Chem Phys; 2005 Feb; 7(3):530-7. PubMed ID: 19785140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of noninertial cavitation produced by an ultrasonic horn.
    Birkin PR; Offin DG; Vian CJ; Leighton TG; Maksimov AO
    J Acoust Soc Am; 2011 Nov; 130(5):3297-308. PubMed ID: 22088002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.
    Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC
    J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical nucleation of bubble clouds in a high pressure spherical resonator.
    Anderson P; Sampathkumar A; Murray TW; Gaitan DF; Glynn Holt R
    J Acoust Soc Am; 2011 Nov; 130(5):3389-95. PubMed ID: 22088012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intense cavitation at extreme static pressure.
    Pishchalnikov YA; Gutierrez J; Dunbar WW; Philpott RW
    Ultrasonics; 2016 Feb; 65():380-9. PubMed ID: 26341849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.
    Dellavale D; Urteaga R; Bonetto FJ
    J Acoust Soc Am; 2010 Jan; 127(1):186-97. PubMed ID: 20058963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of transient paths to the extinction in sonoluminescence.
    Urteaga R; Dellavale D; Puente GF; Bonetto FJ
    J Acoust Soc Am; 2008 Sep; 124(3):1490-6. PubMed ID: 19045640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.
    Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F
    Ultrason Sonochem; 2016 Jan; 28():185-191. PubMed ID: 26384898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue.
    Wang M; Zhou Y
    Ultrason Sonochem; 2018 Apr; 42():327-338. PubMed ID: 29429677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound.
    Church CC
    Ultrasound Med Biol; 2002 Oct; 28(10):1349-64. PubMed ID: 12467862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.