BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22894220)

  • 1. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2012 Aug; 132(2):994-1008. PubMed ID: 22894220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users.
    Nelson DA; Kreft HA; Anderson ES; Donaldson GS
    J Acoust Soc Am; 2011 Jun; 129(6):3916-33. PubMed ID: 21682414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between multipulse integration and speech recognition with cochlear implants.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2014 Sep; 136(3):1257. PubMed ID: 25190399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users.
    Lu T; Litovsky R; Zeng FG
    J Acoust Soc Am; 2011 Jun; 129(6):3934-45. PubMed ID: 21682415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the speech reception threshold of cochlear implant listeners using an envelope-correlation based measure.
    Yousefian N; Loizou PC
    J Acoust Soc Am; 2012 Nov; 132(5):3399-405. PubMed ID: 23145620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between binaural benefit and difference in unilateral speech recognition performance for bilateral cochlear implant users.
    Yoon YS; Li Y; Kang HY; Fu QJ
    Int J Audiol; 2011 Aug; 50(8):554-65. PubMed ID: 21696329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M; Reilly RB; Zeng FG
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners.
    Goldsworthy RL; Delhorne LA; Braida LD; Reed CM
    Trends Amplif; 2013 Mar; 17(1):27-44. PubMed ID: 23429419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.
    Goldsworthy RL
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25330772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined spectral and temporal enhancement to improve cochlear-implant speech perception.
    Bhattacharya A; Vandali A; Zeng FG
    J Acoust Soc Am; 2011 Nov; 130(5):2951-60. PubMed ID: 22087923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stream segregation on a single electrode as a function of pulse rate in cochlear implant listeners.
    Duran SI; Collins LM; Throckmorton CS
    J Acoust Soc Am; 2012 Dec; 132(6):3849-55. PubMed ID: 23231115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consonant recognition as a function of the number of stimulation channels in the Hybrid short-electrode cochlear implant.
    Reiss LA; Turner CW; Karsten SA; Erenberg SR; Taylor J; Gantz BJ
    J Acoust Soc Am; 2012 Nov; 132(5):3406-17. PubMed ID: 23145621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electrode configuration on cochlear implant modulation detection thresholds.
    Pfingst BE
    J Acoust Soc Am; 2011 Jun; 129(6):3908-15. PubMed ID: 21682413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation.
    Zhou N; Dong L; Dixon S
    Hear Res; 2020 Apr; 389():107921. PubMed ID: 32097828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binaural advantages in users of bimodal and bilateral cochlear implant devices.
    Kokkinakis K; Pak N
    J Acoust Soc Am; 2014 Jan; 135(1):EL47-53. PubMed ID: 24437856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users.
    Jones GL; Won JH; Drennan WR; Rubinstein JT
    J Acoust Soc Am; 2013 Jan; 133(1):425-33. PubMed ID: 23297914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.