These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22894230)

  • 1. The ability of cochlear implant users to use temporal envelope cues recovered from speech frequency modulation.
    Won JH; Lorenzi C; Nie K; Li X; Jameyson EM; Drennan WR; Rubinstein JT
    J Acoust Soc Am; 2012 Aug; 132(2):1113-9. PubMed ID: 22894230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.
    Zheng Y; Escabí M; Litovsky RY
    Hear Res; 2017 Aug; 351():45-54. PubMed ID: 28601530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic cue integration in speech intonation recognition with cochlear implants.
    Peng SC; Chatterjee M; Lu N
    Trends Amplif; 2012 Jun; 16(2):67-82. PubMed ID: 22790392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users.
    Li T; Fu QJ
    Int J Audiol; 2011 Aug; 50(8):498-502. PubMed ID: 21696330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of envelope bandwidth on importance functions for cochlear implant simulations.
    Whitmal NA; DeMaio D; Lin R
    J Acoust Soc Am; 2015 Feb; 137(2):733-44. PubMed ID: 25698008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic temporal modulation detection and speech perception in cochlear implant listeners.
    Won JH; Drennan WR; Nie K; Jameyson EM; Rubinstein JT
    J Acoust Soc Am; 2011 Jul; 130(1):376-88. PubMed ID: 21786906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M; Reilly RB; Zeng FG
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of slow temporal modulations in speech identification for cochlear implant users.
    Gnansia D; Lazard DS; Léger AC; Fugain C; Lancelin D; Meyer B; Lorenzi C
    Int J Audiol; 2014 Jan; 53(1):48-54. PubMed ID: 24195655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined spectral and temporal enhancement to improve cochlear-implant speech perception.
    Bhattacharya A; Vandali A; Zeng FG
    J Acoust Soc Am; 2011 Nov; 130(5):2951-60. PubMed ID: 22087923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vowel identification by cochlear implant users: contributions of static and dynamic spectral cues.
    Donaldson GS; Rogers CL; Cardenas ES; Russell BA; Hanna NH
    J Acoust Soc Am; 2013 Oct; 134(4):3021-8. PubMed ID: 24116437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.
    Anderson ES; Oxenham AJ; Nelson PB; Nelson DA
    J Acoust Soc Am; 2012 Dec; 132(6):3925-34. PubMed ID: 23231122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Masking release and the contribution of obstruent consonants on speech recognition in noise by cochlear implant users.
    Li N; Loizou PC
    J Acoust Soc Am; 2010 Sep; 128(3):1262-71. PubMed ID: 20815461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the relationship between modulation sensitivity and pitch resolution in cochlear implant users.
    Camarena A; Goldsworthy RL
    Hear Res; 2024 Jul; 448():109026. PubMed ID: 38776706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of amplitude modulation cues recovered from frequency modulation for cochlear implant users when original speech cues are severely degraded.
    Won JH; Shim HJ; Lorenzi C; Rubinstein JT
    J Assoc Res Otolaryngol; 2014 Jun; 15(3):423-39. PubMed ID: 24532186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-down restoration of speech in cochlear-implant users.
    Bhargava P; Gaudrain E; Başkent D
    Hear Res; 2014 Mar; 309():113-23. PubMed ID: 24368138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the speech reception threshold of cochlear implant listeners using an envelope-correlation based measure.
    Yousefian N; Loizou PC
    J Acoust Soc Am; 2012 Nov; 132(5):3399-405. PubMed ID: 23145620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.