BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22894334)

  • 1. Simulation of steady-state diffusion: driving force ensured by dual control volumes or local equilibrium Monte Carlo.
    Ható Z; Boda D; Kristóf T
    J Chem Phys; 2012 Aug; 137(5):054109. PubMed ID: 22894334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-State Electrodiffusion from the Nernst-Planck Equation Coupled to Local Equilibrium Monte Carlo Simulations.
    Boda D; Gillespie D
    J Chem Theory Comput; 2012 Mar; 8(3):824-9. PubMed ID: 26593344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo.
    Matejczyk B; Valiskó M; Wolfram MT; Pietschmann JF; Boda D
    J Chem Phys; 2017 Mar; 146(12):124125. PubMed ID: 28388126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual control cell reaction ensemble molecular dynamics: a method for simulations of reactions and adsorption in porous materials.
    Lisal M; Brennan JK; Smith WR; Siperstein FR
    J Chem Phys; 2004 Sep; 121(10):4901-12. PubMed ID: 15332926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of inhomogeneous ion diffusion coefficients into kinetic lattice grand canonical monte carlo simulations and application to ion current calculations in a simple model ion channel.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem A; 2007 Dec; 111(49):12506-12. PubMed ID: 17960920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive assessment of surface resistances in zeolite membranes using atomically detailed models.
    Newsome DA; Sholl DS
    J Phys Chem B; 2005 Apr; 109(15):7237-44. PubMed ID: 16851827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A version of diffusion Monte Carlo method based on random grids of coherent states. II. Six-dimensional simulation of electronic states of H2.
    Shalashilin DV; Child MS
    J Chem Phys; 2005 Jun; 122(22):224109. PubMed ID: 15974653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport behavior of oxygen and nitrogen through organasilicon-containing polystyrenes by molecular simulation.
    Liu QL; Huang Y
    J Phys Chem B; 2006 Sep; 110(35):17375-82. PubMed ID: 16942073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of a model nanopore sensor: Ion competition underlies device behavior.
    Mádai E; Valiskó M; Dallos A; Boda D
    J Chem Phys; 2017 Dec; 147(24):244702. PubMed ID: 29289138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics and partitioning of homopolymers into a slit-A grand canonical Monte Carlo simulation study.
    Jiang W; Wang Y
    J Chem Phys; 2004 Aug; 121(8):3905-13. PubMed ID: 15303959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches.
    Kiselev VY; Leda M; Lobanov AI; Marenduzzo D; Goryachev AB
    J Chem Phys; 2011 Oct; 135(15):155103. PubMed ID: 22029337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the diffusion Monte Carlo method to the binding of excess electrons to water clusters.
    Xu J; Jordan KD
    J Phys Chem A; 2010 Jan; 114(3):1364-6. PubMed ID: 19788288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction ensemble molecular dynamics: direct simulation of the dynamic equilibrium properties of chemically reacting mixtures.
    Brennan JK; Lísal M; Gubbins KE; Rice BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061103. PubMed ID: 15697337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-diffusion coefficient of two-center Lennard-Jones fluids: molecular simulations and free volume theory.
    Nasrabad AE
    J Chem Phys; 2009 Jan; 130(2):024503. PubMed ID: 19154034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Monte Carlo simulation in mixtures.
    Rutkai G; Kristóf T
    J Chem Phys; 2010 Mar; 132(10):104107. PubMed ID: 20232947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infinitely fast diffusion in single-file systems.
    Nedea SV; Jansen AP; Lukkien JJ; Hilbers PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046707. PubMed ID: 12786529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems.
    Chen JC; Kim AS
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient iterative grand canonical Monte Carlo algorithm to determine individual ionic chemical potentials in electrolytes.
    Malasics A; Boda D
    J Chem Phys; 2010 Jun; 132(24):244103. PubMed ID: 20590177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.