These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22894338)

  • 1. Relativistically corrected electric field gradients calculated with the normalized elimination of the small component formalism.
    Filatov M; Zou W; Cremer D
    J Chem Phys; 2012 Aug; 137(5):054113. PubMed ID: 22894338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytic calculation of isotropic hyperfine structure constants using the normalized elimination of the small component formalism.
    Filatov M; Zou W; Cremer D
    J Phys Chem A; 2012 Apr; 116(13):3481-6. PubMed ID: 22424301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations.
    Neese F; Wolf A; Fleig T; Reiher M; Hess BA
    J Chem Phys; 2005 May; 122(20):204107. PubMed ID: 15945713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic calculation of second-order electric response properties with the normalized elimination of the small component (NESC) method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2012 Aug; 137(8):084108. PubMed ID: 22938219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytic Calculation of Contact Densities and Mössbauer Isomer Shifts Using the Normalized Elimination of the Small-Component Formalism.
    Filatov M; Zou W; Cremer D
    J Chem Theory Comput; 2012 Mar; 8(3):875-82. PubMed ID: 26593349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development, Implementation, and Application of an Analytic Second Derivative Formalism for the Normalized Elimination of the Small Component Method.
    Zou W; Filatov M; Cremer D
    J Chem Theory Comput; 2012 Aug; 8(8):2617-29. PubMed ID: 26592107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of the analytical energy gradient for the normalized elimination of the small component method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2011 Jun; 134(24):244117. PubMed ID: 21721622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian.
    Cheng L; Gauss J
    J Chem Phys; 2011 Aug; 135(8):084114. PubMed ID: 21895166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic derivatives for perturbatively corrected "double hybrid" density functionals: theory, implementation, and applications.
    Neese F; Schwabe T; Grimme S
    J Chem Phys; 2007 Mar; 126(12):124115. PubMed ID: 17411116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-orbit coupling calculations with the two-component normalized elimination of the small component method.
    Filatov M; Zou W; Cremer D
    J Chem Phys; 2013 Jul; 139(1):014106. PubMed ID: 23822292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.
    Yoshizawa T; Zou W; Cremer D
    J Chem Phys; 2016 Nov; 145(18):184104. PubMed ID: 27846684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic calculations of vibrational hyperpolarizabilities in the atomic orbital basis.
    Thorvaldsen AJ; Ruud K; Jaszuński M
    J Phys Chem A; 2008 Nov; 112(46):11942-50. PubMed ID: 18947217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry optimization of radicaloid systems using improved virtual orbital-complete active space configuration interaction (IVO-CASCI) analytical gradient method.
    Chattopadhyay S; Chaudhuri RK; Freed KF
    J Phys Chem A; 2011 Apr; 115(16):3665-78. PubMed ID: 20586459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quadrupole moment of the Sb nucleus from molecular microwave data and calculated relativistic electric-field gradients.
    Demovic L; Kellö V; Sadlej AJ; Cooke SA
    J Chem Phys; 2006 May; 124(18):184308. PubMed ID: 16709107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect.
    Wang F; Ziegler T
    J Chem Phys; 2005 Oct; 123(15):154102. PubMed ID: 16252937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.
    Cuny J; Furet E; Gautier R; Le Pollès L; Pickard CJ; d'Espinose de Lacaillerie JB
    Chemphyschem; 2009 Dec; 10(18):3320-9. PubMed ID: 19937665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-accuracy calculation of nuclear quadrupole moments of atomic halogens.
    Yakobi H; Eliav E; Visscher L; Kaldor U
    J Chem Phys; 2007 Feb; 126(5):054301. PubMed ID: 17302471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear quadrupole moment of 119Sn.
    Barone G; Mastalerz R; Reiher M; Lindh R
    J Phys Chem A; 2008 Feb; 112(7):1666-72. PubMed ID: 18229904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistically corrected hyperfine structure constants calculated with the regular approximation applied to correlation corrected ab initio theory.
    Filatov M; Cremer D
    J Chem Phys; 2004 Sep; 121(12):5618-22. PubMed ID: 15366984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods.
    Grimme S
    J Phys Chem A; 2005 Apr; 109(13):3067-77. PubMed ID: 16833631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.