These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

683 related articles for article (PubMed ID: 22894355)

  • 1. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics scheme for precise estimation of electrostatic interaction via zero-dipole summation principle.
    Fukuda I; Yonezawa Y; Nakamura H
    J Chem Phys; 2011 Apr; 134(16):164107. PubMed ID: 21528950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems.
    Fukuda I; Kamiya N; Nakamura H
    J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system.
    Fukuda I
    J Chem Phys; 2013 Nov; 139(17):174107. PubMed ID: 24206287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A long-range electrostatic potential based on the Wolf method charge-neutral condition.
    Yonezawa Y
    J Chem Phys; 2012 Jun; 136(24):244103. PubMed ID: 22755561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water.
    Takahashi K; Narumi T; Yasuoka K
    J Chem Phys; 2010 Jul; 133(1):014109. PubMed ID: 20614961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic energies and forces computed without explicit interparticle interactions: a linear time complexity formulation.
    Petrella RJ; Karplus M
    J Comput Chem; 2005 Jun; 26(8):755-87. PubMed ID: 15800892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.
    Beck DA; Armen RS; Daggett V
    Biochemistry; 2005 Jan; 44(2):609-16. PubMed ID: 15641786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
    Bernacki K; Hetenyi B; Berne BJ
    J Chem Phys; 2004 Jul; 121(1):44-50. PubMed ID: 15260521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The polarizable point dipoles method with electrostatic damping: implementation on a model system.
    Sala J; Guàrdia E; Masia M
    J Chem Phys; 2010 Dec; 133(23):234101. PubMed ID: 21186852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)].
    Laino T; Hutter J
    J Chem Phys; 2008 Aug; 129(7):074102. PubMed ID: 19044755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic energy in the effective fragment potential method: theory and application to benzene dimer.
    Slipchenko LV; Gordon MS
    J Comput Chem; 2007 Jan; 28(1):276-91. PubMed ID: 17143863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the truncation of long-range electrostatic interactions in DNA.
    Norberg J; Nilsson L
    Biophys J; 2000 Sep; 79(3):1537-53. PubMed ID: 10969015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General methodology to optimize damping functions to account for charge penetration effects in electrostatic calculations using multicentered multipolar expansions.
    Werneck AS; Filho TM; Dardenne LE
    J Phys Chem A; 2008 Jan; 112(2):268-80. PubMed ID: 18095663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid water simulation: a critical examination of cutoff length.
    Yonetani Y
    J Chem Phys; 2006 May; 124(20):204501. PubMed ID: 16774347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of the zero-multipole summation method in modern molecular dynamics software.
    Sakuraba S; Fukuda I
    J Comput Chem; 2018 Jul; 39(20):1551-1560. PubMed ID: 29727031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilevel summation method for electrostatic force evaluation.
    Hardy DJ; Wu Z; Phillips JC; Stone JE; Skeel RD; Schulten K
    J Chem Theory Comput; 2015 Feb; 11(2):766-79. PubMed ID: 25691833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.