BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22894442)

  • 1. A characterization of robust radiation therapy treatment planning methods-from expected value to worst case optimization.
    Fredriksson A
    Med Phys; 2012 Aug; 39(8):5169-81. PubMed ID: 22894442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimax optimization for handling range and setup uncertainties in proton therapy.
    Fredriksson A; Forsgren A; Hårdemark B
    Med Phys; 2011 Mar; 38(3):1672-84. PubMed ID: 21520880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust optimization of intensity modulated proton therapy.
    Liu W; Zhang X; Li Y; Mohan R
    Med Phys; 2012 Feb; 39(2):1079-91. PubMed ID: 22320818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical evaluation of worst-case robust optimization intensity-modulated proton therapy plans using an exhaustive sampling approach.
    Yang Z; Li H; Li Y; Li Y; Chang Y; Li Q; Yang K; Wu G; Sahoo N; Poenisch F; Gillin M; Zhu XR; Zhang X
    Radiat Oncol; 2019 Jul; 14(1):129. PubMed ID: 31324257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust mixed electron-photon radiation therapy optimization.
    Renaud MA; Serban M; Seuntjens J
    Med Phys; 2019 Mar; 46(3):1384-1396. PubMed ID: 30628079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coverage optimized planning: probabilistic treatment planning based on dose coverage histogram criteria.
    Gordon JJ; Sayah N; Weiss E; Siebers JV
    Med Phys; 2010 Feb; 37(2):550-63. PubMed ID: 20229863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning.
    Unkelbach J; Bortfeld T; Martin BC; Soukup M
    Med Phys; 2009 Jan; 36(1):149-63. PubMed ID: 19235384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers.
    Liu W; Liao Z; Schild SE; Liu Z; Li H; Li Y; Park PC; Li X; Stoker J; Shen J; Keole S; Anand A; Fatyga M; Dong L; Sahoo N; Vora S; Wong W; Zhu XR; Bues M; Mohan R
    Pract Radiat Oncol; 2015; 5(2):e77-86. PubMed ID: 25413400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method of incorporating systematic uncertainties in intensity-modulated radiotherapy optimization.
    Yang J; Mageras GS; Spirou SV; Jackson A; Yorke E; Ling CC; Chui CS
    Med Phys; 2005 Aug; 32(8):2567-79. PubMed ID: 16193787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated robust optimization algorithm for proton therapy treatment planning.
    Buti G; Souris K; Barragán Montero AM; Cohilis M; Lee JA; Sterpin E
    Med Phys; 2020 Jul; 47(7):2746-2754. PubMed ID: 32155667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of organ-at-risk sparing and plan robustness for spot-scanning proton therapy and volumetric modulated arc photon therapy in head-and-neck cancer.
    Barten DL; Tol JP; Dahele M; Slotman BJ; Verbakel WF
    Med Phys; 2015 Nov; 42(11):6589-98. PubMed ID: 26520750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward robust adaptive radiation therapy strategies.
    Böck M; Eriksson K; Forsgren A; Hårdemark B
    Med Phys; 2017 Jun; 44(6):2054-2065. PubMed ID: 28317129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty reduction in intensity modulated proton therapy by inverse Monte Carlo treatment planning.
    Morávek Z; Rickhey M; Hartmann M; Bogner L
    Phys Med Biol; 2009 Aug; 54(15):4803-19. PubMed ID: 19622848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy for Oropharyngeal Cancer Patients.
    van der Voort S; van de Water S; Perkó Z; Heijmen B; Lathouwers D; Hoogeman M
    Int J Radiat Oncol Biol Phys; 2016 May; 95(1):163-170. PubMed ID: 27084639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The price of robustness; impact of worst-case optimization on organ-at-risk dose and complication probability in intensity-modulated proton therapy for oropharyngeal cancer patients.
    van de Water S; van Dam I; Schaart DR; Al-Mamgani A; Heijmen BJ; Hoogeman MS
    Radiother Oncol; 2016 Jul; 120(1):56-62. PubMed ID: 27178142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the optimization starting conditions on the robustness of intensity-modulated proton therapy plans.
    Albertini F; Hug EB; Lomax AJ
    Phys Med Biol; 2010 May; 55(10):2863-78. PubMed ID: 20427853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust algorithm of intensity modulated proton therapy for critical tissue sparing and target coverage.
    Inaniwa T; Kanematsu N; Furukawa T; Hasegawa A
    Phys Med Biol; 2011 Aug; 56(15):4749-70. PubMed ID: 21753233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose-shaping using targeted sparse optimization.
    Sayre GA; Ruan D
    Med Phys; 2013 Jul; 40(7):071711. PubMed ID: 23822415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning.
    Fredriksson A; Bokrantz R
    Med Phys; 2014 Aug; 41(8):081701. PubMed ID: 25086511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust spatiotemporal fractionation schemes in the presence of patient setup uncertainty.
    Gaddy MR; Unkelbach J; Papp D
    Med Phys; 2019 Jul; 46(7):2988-3000. PubMed ID: 31087677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.