BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22894468)

  • 1. Axial resolution improvement by modulated deconvolution in Fourier domain optical coherence tomography.
    Bousi E; Pitris C
    J Biomed Opt; 2012 Jul; 17(7):071307. PubMed ID: 22894468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography axial resolution improvement by step-frequency encoding.
    Bousi E; Charalambous I; Pitris C
    Opt Express; 2010 May; 18(11):11877-90. PubMed ID: 20589049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion compensation in Fourier domain optical coherence tomography.
    Al-Saeed TA; Shalaby MY; Khalil DA
    Appl Opt; 2014 Oct; 53(29):6643-53. PubMed ID: 25322365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography.
    Sarunic MV; Applegate BE; Izatt JA
    Opt Lett; 2006 Aug; 31(16):2426-8. PubMed ID: 16880844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram.
    Vakhtin AB; Peterson KA; Kane DJ
    Opt Lett; 2006 May; 31(9):1271-3. PubMed ID: 16642082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning.
    Wang RK
    Phys Med Biol; 2007 Oct; 52(19):5897-907. PubMed ID: 17881807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency domain multiplexing for speckle reduction in optical coherence tomography.
    van Soest G; Villiger M; Regar E; Tearney GJ; Bouma BE; van der Steen AF
    J Biomed Opt; 2012 Jul; 17(7):076018. PubMed ID: 22894501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-range parallel Fourier-domain optical coherence tomography using a spatial carrier frequency.
    Huang B; Bu P; Wang X; Nan N; Guo X
    Appl Opt; 2013 Feb; 52(5):958-65. PubMed ID: 23400057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-resolved Doppler optical coherence tomography--limitations and improvements.
    Szkulmowska A; Szkulmowski M; Kowalczyk A; Wojtkowski M
    Opt Lett; 2008 Jul; 33(13):1425-7. PubMed ID: 18594653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography.
    Ai J; Wang LV
    Opt Lett; 2005 Nov; 30(21):2939-41. PubMed ID: 16279475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconvolution methods for image deblurring in optical coherence tomography.
    Liu Y; Liang Y; Mu G; Zhu X
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jan; 26(1):72-7. PubMed ID: 19109602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm.
    Hojjatoleslami SA; Avanaki MR; Podoleanu AG
    Appl Opt; 2013 Aug; 52(23):5663-70. PubMed ID: 23938416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography.
    Michaely R; Bachmann AH; Villiger ML; Blatter C; Lasser T; Leitgeb RA
    J Biomed Opt; 2007; 12(4):041213. PubMed ID: 17867802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artifact removal in complex frequency domain optical coherence tomography with an iterative least-squares phase-shifting algorithm.
    Oh JT; Kim BM
    Appl Opt; 2006 Jun; 45(17):4157-64. PubMed ID: 16761059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.
    Zhang J; Nelson JS; Chen Z
    Opt Lett; 2005 Jan; 30(2):147-9. PubMed ID: 15675695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased ranging depth in optical frequency domain imaging by frequency encoding.
    Motaghian Nezam SM; Vakoc BJ; Desjardins AE; Tearney GJ; Bouma BE
    Opt Lett; 2007 Oct; 32(19):2768-70. PubMed ID: 17909567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion-based optical coherence tomography OCT measurement of mixture concentrations.
    Bagherzadeh SM; Grajciar B; Hitzenberger CK; Pircher M; Fercher AF
    Opt Lett; 2007 Oct; 32(20):2924-6. PubMed ID: 17938654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-to-noise ratio study of full-field fourier-domain optical coherence tomography.
    Blazkiewicz P; Gourlay M; Tucker JR; Rakic AD; Zvyagin AV
    Appl Opt; 2005 Dec; 44(36):7722-9. PubMed ID: 16381518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal processing for sidelobe suppression in optical coherence tomography images.
    Wang Y; Liang Y; Xu K
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):415-21. PubMed ID: 20208930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended focus depth for Fourier domain optical coherence microscopy.
    Leitgeb RA; Villiger M; Bachmann AH; Steinmann L; Lasser T
    Opt Lett; 2006 Aug; 31(16):2450-2. PubMed ID: 16880852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.