BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22894474)

  • 21. Application of infrared light for in vivo neural stimulation.
    Wells J; Kao C; Jansen ED; Konrad P; Mahadevan-Jansen A
    J Biomed Opt; 2005; 10(6):064003. PubMed ID: 16409069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The study on the targets of the optical evoked auditory brainstem response on the cochlea of guinea pig stimulating by infrared laser].
    Xie BB; Li HW; Dai CF
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Sep; 51(9):685-690. PubMed ID: 27666708
    [No Abstract]   [Full Text] [Related]  

  • 23. Infrared neural stimulation at different wavelengths and pulse shapes.
    Xu Y; Magnuson M; Agarwal A; Tan X; Richter CP
    Prog Biophys Mol Biol; 2021 Jul; 162():89-100. PubMed ID: 33359901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.
    Dhakal KR; Gu L; Shivalingaiah S; Dennis TS; Morris-Bobzean SA; Li T; Perrotti LI; Mohanty SK
    PLoS One; 2014; 9(11):e111488. PubMed ID: 25383687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical stimulation of primary motor cortex with 980nm infrared neural stimulation.
    Wang MQ; Xia QL; Wu XY; Wang X; Zheng XL; Hou WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6143-6. PubMed ID: 25571399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffuse photon density wave measurements and Monte Carlo simulations.
    Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA
    J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Infrared neural stimulation fails to evoke neural activity in the deaf guinea pig cochlea.
    Thompson AC; Fallon JB; Wise AK; Wade SA; Shepherd RK; Stoddart PR
    Hear Res; 2015 Jun; 324():46-53. PubMed ID: 25796297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined optical and electrical stimulation of neural tissue in vivo.
    Duke AR; Cayce JM; Malphrus JD; Konrad P; Mahadevan-Jansen A; Jansen ED
    J Biomed Opt; 2009; 14(6):060501. PubMed ID: 20059232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of radiant exposure and repetition rate in infrared neural stimulation with near-infrared lasers.
    Alemzadeh-Ansari MJ; Ansari MA; Zakeri M; Haghjoo M
    Lasers Med Sci; 2019 Oct; 34(8):1555-1566. PubMed ID: 30887233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Annihilation of single cell neural oscillations by feedforward and feedback control.
    Fröhlich F; Jezernik S
    J Comput Neurosci; 2004; 17(2):165-78. PubMed ID: 15306738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation using infrared light in a mammalian axon model.
    Peterson EJ; Tyler DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1896-9. PubMed ID: 23366284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons.
    Yong J; Needham K; Brown WG; Nayagam BA; McArthur SL; Yu A; Stoddart PR
    Adv Healthc Mater; 2014 Nov; 3(11):1862-8. PubMed ID: 24799427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale.
    Liaparinos PF
    Phys Med Biol; 2015 Nov; 60(22):8885-99. PubMed ID: 26553576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auditory nerve impulses induced by 980 nm laser.
    Guan T; Zhu K; Chen F; He Y; Wang J; Wu M; Nie G
    J Biomed Opt; 2015 Aug; 20(8):88004. PubMed ID: 26295178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole cell patch clamp for investigating the mechanisms of infrared neural stimulation.
    Brown WG; Needham K; Nayagam BA; Stoddart PR
    J Vis Exp; 2013 Jul; (77):. PubMed ID: 23929071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-layer skull approximations perform well in transcranial direct current stimulation modeling.
    Rampersad SM; Stegeman DF; Oostendorp TF
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):346-53. PubMed ID: 22855232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of skin reflectance images using 3D tissue modeling and multispectral Monte Carlo light propagation.
    Paquit VC; Mériaudeau F; Price JR; Tobin KW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():447-50. PubMed ID: 19162689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold nanorod-assisted near-infrared stimulation of bullfrog sciatic nerve.
    Mou Z; You M; Xue W
    Lasers Med Sci; 2018 Dec; 33(9):1907-1912. PubMed ID: 29862465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.