These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22894524)
1. Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model. Liu C; Rajaram N; Vishwanath K; Jiang T; Palmer GM; Ramanujam N J Biomed Opt; 2012 Jul; 17(7):077012. PubMed ID: 22894524 [TBL] [Abstract][Full Text] [Related]
2. Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media. Palmer GM; Ramanujam N J Biomed Opt; 2008; 13(2):024017. PubMed ID: 18465980 [TBL] [Abstract][Full Text] [Related]
3. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties. Ma G; Delorme JF; Gallant P; Boas DA Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611 [TBL] [Abstract][Full Text] [Related]
4. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model. Ong YH; Zhu C; Liu Q J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media. Tanbakuchi AA; Rouse AR; Gmitro AF J Biomed Opt; 2009; 14(4):044024. PubMed ID: 19725735 [TBL] [Abstract][Full Text] [Related]
6. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model. Finlay JC; Foster TH Appl Opt; 2005 Apr; 44(10):1917-33. PubMed ID: 15813528 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media. Liebert A; Wabnitz H; Zołek N; Macdonald R Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media. Deng X; Gan X; Gu M J Biomed Opt; 2003 Jul; 8(3):440-9. PubMed ID: 12880350 [TBL] [Abstract][Full Text] [Related]
9. Recovering intrinsic fluorescence by Monte Carlo modeling. Müller M; Hendriks BH J Biomed Opt; 2013 Feb; 18(2):27009. PubMed ID: 23400402 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media. Jiang X; Deng Y; Luo Z; Wang K; Lian L; Yang X; Meglinski I; Luo Q Opt Express; 2014 Dec; 22(26):31948-65. PubMed ID: 25607163 [TBL] [Abstract][Full Text] [Related]
11. Use of scaling relations to extract intrinsic fluorescence lifetime of targets embedded in turbid media. Chernomordik V; Hassan M; Amyot F; Riley J; Gandjbakhche A J Biomed Opt; 2008; 13(2):024025. PubMed ID: 18465988 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the fluorescence temporal point-spread function in a turbid medium and its application to optical imaging. Han SH; Farshchi-Heydari S; Hall DJ J Biomed Opt; 2008; 13(6):064038. PubMed ID: 19123684 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous extraction of optical transport parameters and intrinsic fluorescence of tissue mimicking model media using a spatially resolved fluorescence technique. Gupta S; Raja VL; Pradhan A Appl Opt; 2006 Oct; 45(28):7529-37. PubMed ID: 16983443 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence-lifetime-based tomography for turbid media. Kumar AT; Skoch J; Bacskai BJ; Boas DA; Dunn AK Opt Lett; 2005 Dec; 30(24):3347-9. PubMed ID: 16389827 [TBL] [Abstract][Full Text] [Related]
15. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization. Bigelow CE; Foster TH J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Palmer GM; Ramanujam N Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550 [TBL] [Abstract][Full Text] [Related]
17. Drug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations. Xie H; Liu H; Svenmarker P; Axelsson J; Xu CT; Gräfe S; Lundeman JH; Cheng HP; Svanberg S; Bendsoe N; Andersen PE; Svanberg K; Andersson-Engels S J Biomed Opt; 2011 Jun; 16(6):066002. PubMed ID: 21721803 [TBL] [Abstract][Full Text] [Related]
18. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. Liu Q; Zhu C; Ramanujam N J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848 [TBL] [Abstract][Full Text] [Related]
19. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media. Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904 [TBL] [Abstract][Full Text] [Related]
20. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence. Diamond KR; Farrell TJ; Patterson MS Phys Med Biol; 2003 Dec; 48(24):4135-49. PubMed ID: 14727757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]