These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22894616)

  • 21. Overcoming β-lactam resistance in Gram-negative pathogens.
    Bush K
    Future Med Chem; 2016 Jun; 8(9):921-4. PubMed ID: 27228233
    [No Abstract]   [Full Text] [Related]  

  • 22. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat.
    Bradford PA
    Clin Microbiol Rev; 2001 Oct; 14(4):933-51, table of contents. PubMed ID: 11585791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extended-spectrum beta-lactamases: a brief clinical update.
    Malloy AM; Campos JM
    Pediatr Infect Dis J; 2011 Dec; 30(12):1092-3. PubMed ID: 22105419
    [No Abstract]   [Full Text] [Related]  

  • 24. Epidemiology of infections caused by multiresistant gram-negatives: ESBLs, MBLs, panresistant strains.
    Rossolini GM; Mantengoli E; Docquier JD; Musmanno RA; Coratza G
    New Microbiol; 2007 Jul; 30(3):332-9. PubMed ID: 17802921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of KPC-2 alone does not always result in β-lactam MICs representing resistance in gram-negative pathogens.
    Roth AL; Thomson KS; Lister PD; Hanson ND
    J Clin Microbiol; 2012 Dec; 50(12):4183-4. PubMed ID: 22972823
    [No Abstract]   [Full Text] [Related]  

  • 26. Towards a phenotypic screening strategy for emerging β-lactamases in Gram-negative bacilli.
    Willems E; Verhaegen J; Magerman K; Nys S; Cartuyvels R
    Int J Antimicrob Agents; 2013 Feb; 41(2):99-109. PubMed ID: 23280443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High prevalence of co-expression of newer beta-lactamases (ESBLs, Amp-C-beta-lactamases, and metallo-beta-lactamases) in gram-negative bacilli.
    Chatterjee SS; Karmacharya R; Madhup SK; Gautam V; Das A; Ray P
    Indian J Med Microbiol; 2010; 28(3):267-8. PubMed ID: 20644325
    [No Abstract]   [Full Text] [Related]  

  • 28. [Progress in regulatory mechanism for inducing β-lactamase in Gram-negative bacteria].
    Xu C; Zhang T; Cai J; Yu Z; Qiu J; Yin J
    Sheng Wu Gong Cheng Xue Bao; 2018 Aug; 34(8):1288-1296. PubMed ID: 30152214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli.
    Lee K; Kim CK; Yong D; Jeong SH; Yum JH; Seo YH; Docquier JD; Chong Y
    J Microbiol Methods; 2010 Nov; 83(2):149-52. PubMed ID: 20801167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. β-lactamase-mediated resistance: a biochemical, epidemiological and genetic overview.
    Gutkind GO; Di Conza J; Power P; Radice M
    Curr Pharm Des; 2013; 19(2):164-208. PubMed ID: 22894615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defining an extended-spectrum beta-lactamase.
    Livermore DM
    Clin Microbiol Infect; 2008 Jan; 14 Suppl 1():3-10. PubMed ID: 18154524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of in vitro susceptibility tests for carbapenemase-producing Gram-negative bacteria.
    Sun J; Xu Y; Yu Y; Ni Y
    J Med Microbiol; 2015 Jun; 64(6):620-622. PubMed ID: 25873580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current challenges in antimicrobial chemotherapy: the impact of extended-spectrum beta-lactamases and metallo-beta-lactamases on the treatment of resistant Gram-negative pathogens.
    Helfand MS; Bonomo RA
    Curr Opin Pharmacol; 2005 Oct; 5(5):452-8. PubMed ID: 16084766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prevalence of newer beta-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002.
    Moland ES; Hanson ND; Black JA; Hossain A; Song W; Thomson KS
    J Clin Microbiol; 2006 Sep; 44(9):3318-24. PubMed ID: 16954267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of an accelerated protocol for detection of extended-spectrum beta-lactamase-producing gram-negative bacilli from positive blood cultures.
    Navon-Venezia S; Leavitt A; Ben-Ami R; Aharoni Y; Schwaber MJ; Schwartz D; Carmeli Y
    J Clin Microbiol; 2005 Jan; 43(1):439-41. PubMed ID: 15635009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy of microdilution and the AutoMicrobic System in detection of beta-lactam resistance in gram-negative bacterial mutants with derepressed beta-lactamase.
    Washington JA; Knapp CC; Sanders CC
    Rev Infect Dis; 1988; 10(4):824-9. PubMed ID: 3263689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel beta-lactam antibiotics and inhibitor combinations.
    Bassetti M; Righi E; Viscoli C
    Expert Opin Investig Drugs; 2008 Mar; 17(3):285-96. PubMed ID: 18321228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissemination of IncF plasmids carrying beta-lactamase genes in Gram-negative bacteria from Nigerian hospitals.
    Ogbolu DO; Daini OA; Ogunledun A; Terry Alli OA; Webber MA
    J Infect Dev Ctries; 2013 May; 7(5):382-90. PubMed ID: 23669427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: beta-lactams in peril!
    Thomson JM; Bonomo RA
    Curr Opin Microbiol; 2005 Oct; 8(5):518-24. PubMed ID: 16126451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Detection of resistance phenotypes in gram-negative bacteria].
    Navarro F; Calvo J; Cantón R; Fernández-Cuenca F; Mirelis B
    Enferm Infecc Microbiol Clin; 2011; 29(7):524-34. PubMed ID: 21696863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.