BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 22894905)

  • 1. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells.
    Chiavarina B; Martinez-Outschoorn UE; Whitaker-Menezes D; Howell A; Tanowitz HB; Pestell RG; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Sep; 11(17):3280-9. PubMed ID: 22894905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis.
    Chiavarina B; Whitaker-Menezes D; Migneco G; Martinez-Outschoorn UE; Pavlides S; Howell A; Tanowitz HB; Casimiro MC; Wang C; Pestell RG; Grieshaber P; Caro J; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Sep; 9(17):3534-51. PubMed ID: 20864819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis.
    Avena P; Anselmo W; Whitaker-Menezes D; Wang C; Pestell RG; Lamb RS; Hulit J; Casaburi I; Andò S; Martinez-Outschoorn UE; Lisanti MP; Sotgia F
    Cell Cycle; 2013 May; 12(9):1360-70. PubMed ID: 23574724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
    Guido C; Whitaker-Menezes D; Capparelli C; Balliet R; Lin Z; Pestell RG; Howell A; Aquila S; Andò S; Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Aug; 11(16):3019-35. PubMed ID: 22874531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth.
    Capparelli C; Whitaker-Menezes D; Guido C; Balliet R; Pestell TG; Howell A; Sneddon S; Pestell RG; Martinez-Outschoorn U; Lisanti MP; Sotgia F
    Cell Cycle; 2012 Jun; 11(12):2272-84. PubMed ID: 22684333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection.
    Balliet RM; Capparelli C; Guido C; Pestell TG; Martinez-Outschoorn UE; Lin Z; Whitaker-Menezes D; Chiavarina B; Pestell RG; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Dec; 10(23):4065-73. PubMed ID: 22129993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.
    Chiavarina B; Whitaker-Menezes D; Martinez-Outschoorn UE; Witkiewicz AK; Birbe R; Howell A; Pestell RG; Smith J; Daniel R; Sotgia F; Lisanti MP
    Cancer Biol Ther; 2011 Dec; 12(12):1101-13. PubMed ID: 22236875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron regulatory protein 2 modulates the switch from aerobic glycolysis to oxidative phosphorylation in mouse embryonic fibroblasts.
    Li H; Liu Y; Shang L; Cai J; Wu J; Zhang W; Pu X; Dong W; Qiao T; Li K
    Proc Natl Acad Sci U S A; 2019 May; 116(20):9871-9876. PubMed ID: 31040213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of Renal Cysts and Tumors in Vhl/Trp53-Deficient Mice Requires HIF1α and HIF2α.
    Schönenberger D; Harlander S; Rajski M; Jacobs RA; Lundby AK; Adlesic M; Hejhal T; Wild PJ; Lundby C; Frew IJ
    Cancer Res; 2016 Apr; 76(7):2025-36. PubMed ID: 26759234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.
    Migneco G; Whitaker-Menezes D; Chiavarina B; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Flomenberg N; Tsirigos A; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Jun; 9(12):2412-22. PubMed ID: 20562527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Pavlides S; Tsirigos A; Ertel A; Pestell RG; Broda P; Minetti C; Lisanti MP; Sotgia F
    Cell Cycle; 2011 Dec; 10(23):4047-64. PubMed ID: 22134189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIF1α and HIF2α exert distinct nutrient preferences in renal cells.
    Arreola A; Cowey CL; Coloff JL; Rathmell JC; Rathmell WK
    PLoS One; 2014; 9(5):e98705. PubMed ID: 24879016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but essential for postnatal muscle regeneration.
    Yang X; Yang S; Wang C; Kuang S
    J Biol Chem; 2017 Apr; 292(14):5981-5991. PubMed ID: 28232488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HIF1α/HIF2α-miR210-3p network regulates glioblastoma cell proliferation, dedifferentiation and chemoresistance through EGF under hypoxic conditions.
    Wang P; Yan Q; Liao B; Zhao L; Xiong S; Wang J; Zou D; Pan J; Wu L; Deng Y; Wu N; Gong S
    Cell Death Dis; 2020 Nov; 11(11):992. PubMed ID: 33208727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the hypoxia-inducible factor 2α nuclear interactome in melanoma cells reveals master proteins involved in melanoma development.
    Steunou AL; Ducoux-Petit M; Lazar I; Monsarrat B; Erard M; Muller C; Clottes E; Burlet-Schiltz O; Nieto L
    Mol Cell Proteomics; 2013 Mar; 12(3):736-48. PubMed ID: 23275444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes.
    Hicks KC; Patel TB
    J Biol Chem; 2016 Aug; 291(32):16787-801. PubMed ID: 27281823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposing effects of HIF1α and HIF2α on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYC-associated factor X.
    Qin N; de Cubas AA; Garcia-Martin R; Richter S; Peitzsch M; Menschikowski M; Lenders JW; Timmers HJ; Mannelli M; Opocher G; Economopoulou M; Siegert G; Chavakis T; Pacak K; Robledo M; Eisenhofer G
    Int J Cancer; 2014 Nov; 135(9):2054-64. PubMed ID: 24676840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1α-mediated VEGF-dependent angiogenesis.
    Raja R; Kale S; Thorat D; Soundararajan G; Lohite K; Mane A; Karnik S; Kundu GC
    Oncogene; 2014 Apr; 33(16):2053-64. PubMed ID: 23728336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.