These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection. Balliet RM; Capparelli C; Guido C; Pestell TG; Martinez-Outschoorn UE; Lin Z; Whitaker-Menezes D; Chiavarina B; Pestell RG; Howell A; Sotgia F; Lisanti MP Cell Cycle; 2011 Dec; 10(23):4065-73. PubMed ID: 22129993 [TBL] [Abstract][Full Text] [Related]
7. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Chiavarina B; Whitaker-Menezes D; Martinez-Outschoorn UE; Witkiewicz AK; Birbe R; Howell A; Pestell RG; Smith J; Daniel R; Sotgia F; Lisanti MP Cancer Biol Ther; 2011 Dec; 12(12):1101-13. PubMed ID: 22236875 [TBL] [Abstract][Full Text] [Related]
8. Iron regulatory protein 2 modulates the switch from aerobic glycolysis to oxidative phosphorylation in mouse embryonic fibroblasts. Li H; Liu Y; Shang L; Cai J; Wu J; Zhang W; Pu X; Dong W; Qiao T; Li K Proc Natl Acad Sci U S A; 2019 May; 116(20):9871-9876. PubMed ID: 31040213 [TBL] [Abstract][Full Text] [Related]
9. Formation of Renal Cysts and Tumors in Vhl/Trp53-Deficient Mice Requires HIF1α and HIF2α. Schönenberger D; Harlander S; Rajski M; Jacobs RA; Lundby AK; Adlesic M; Hejhal T; Wild PJ; Lundby C; Frew IJ Cancer Res; 2016 Apr; 76(7):2025-36. PubMed ID: 26759234 [TBL] [Abstract][Full Text] [Related]
10. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Martinez-Outschoorn U; Sotgia F; Lisanti MP Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293 [TBL] [Abstract][Full Text] [Related]
11. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Migneco G; Whitaker-Menezes D; Chiavarina B; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Flomenberg N; Tsirigos A; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP Cell Cycle; 2010 Jun; 9(12):2412-22. PubMed ID: 20562527 [TBL] [Abstract][Full Text] [Related]
12. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Pavlides S; Tsirigos A; Ertel A; Pestell RG; Broda P; Minetti C; Lisanti MP; Sotgia F Cell Cycle; 2011 Dec; 10(23):4047-64. PubMed ID: 22134189 [TBL] [Abstract][Full Text] [Related]
14. The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but essential for postnatal muscle regeneration. Yang X; Yang S; Wang C; Kuang S J Biol Chem; 2017 Apr; 292(14):5981-5991. PubMed ID: 28232488 [TBL] [Abstract][Full Text] [Related]
16. The HIF1α/HIF2α-miR210-3p network regulates glioblastoma cell proliferation, dedifferentiation and chemoresistance through EGF under hypoxic conditions. Wang P; Yan Q; Liao B; Zhao L; Xiong S; Wang J; Zou D; Pan J; Wu L; Deng Y; Wu N; Gong S Cell Death Dis; 2020 Nov; 11(11):992. PubMed ID: 33208727 [TBL] [Abstract][Full Text] [Related]
17. Identification of the hypoxia-inducible factor 2α nuclear interactome in melanoma cells reveals master proteins involved in melanoma development. Steunou AL; Ducoux-Petit M; Lazar I; Monsarrat B; Erard M; Muller C; Clottes E; Burlet-Schiltz O; Nieto L Mol Cell Proteomics; 2013 Mar; 12(3):736-48. PubMed ID: 23275444 [TBL] [Abstract][Full Text] [Related]
18. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. Hicks KC; Patel TB J Biol Chem; 2016 Aug; 291(32):16787-801. PubMed ID: 27281823 [TBL] [Abstract][Full Text] [Related]
19. Opposing effects of HIF1α and HIF2α on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYC-associated factor X. Qin N; de Cubas AA; Garcia-Martin R; Richter S; Peitzsch M; Menschikowski M; Lenders JW; Timmers HJ; Mannelli M; Opocher G; Economopoulou M; Siegert G; Chavakis T; Pacak K; Robledo M; Eisenhofer G Int J Cancer; 2014 Nov; 135(9):2054-64. PubMed ID: 24676840 [TBL] [Abstract][Full Text] [Related]
20. Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1α-mediated VEGF-dependent angiogenesis. Raja R; Kale S; Thorat D; Soundararajan G; Lohite K; Mane A; Karnik S; Kundu GC Oncogene; 2014 Apr; 33(16):2053-64. PubMed ID: 23728336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]