BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22895166)

  • 1. Turned on by genotoxic stress.
    Travesa A; Wittenberg C
    Cell Cycle; 2012 Sep; 11(17):3145-6. PubMed ID: 22895166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA replication stress differentially regulates G1/S genes via Rad53-dependent inactivation of Nrm1.
    Travesa A; Kuo D; de Bruin RA; Kalashnikova TI; Guaderrama M; Thai K; Aslanian A; Smolka MB; Yates JR; Ideker T; Wittenberg C
    EMBO J; 2012 Apr; 31(7):1811-22. PubMed ID: 22333915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways.
    Sun Z; Fay DS; Marini F; Foiani M; Stern DF
    Genes Dev; 1996 Feb; 10(4):395-406. PubMed ID: 8600024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
    O'Neill BM; Szyjka SJ; Lis ET; Bailey AO; Yates JR; Aparicio OM; Romesberg FE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9290-5. PubMed ID: 17517611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway.
    Sugimoto K; Ando S; Shimomura T; Matsumoto K
    Mol Cell Biol; 1997 Oct; 17(10):5905-14. PubMed ID: 9315648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for DNA primase in coupling DNA replication to DNA damage response.
    Marini F; Pellicioli A; Paciotti V; Lucchini G; Plevani P; Stern DF; Foiani M
    EMBO J; 1997 Feb; 16(3):639-50. PubMed ID: 9034345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae.
    Szyjka SJ; Aparicio JG; Viggiani CJ; Knott S; Xu W; Tavaré S; Aparicio OM
    Genes Dev; 2008 Jul; 22(14):1906-20. PubMed ID: 18628397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase.
    Shimada K; Pasero P; Gasser SM
    Genes Dev; 2002 Dec; 16(24):3236-52. PubMed ID: 12502744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors.
    Carter CD; Kitchen LE; Au WC; Babic CM; Basrai MA
    Mol Cell Biol; 2005 Dec; 25(23):10273-85. PubMed ID: 16287844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase.
    Bashkirov VI; Bashkirova EV; Haghnazari E; Heyer WD
    Mol Cell Biol; 2003 Feb; 23(4):1441-52. PubMed ID: 12556502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rad53: a controller ensuring the fine-tuning of histone levels.
    Quivy JP; Almouzni G
    Cell; 2003 Nov; 115(5):508-10. PubMed ID: 14651842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats.
    Li X; Jin X; Sharma S; Liu X; Zhang J; Niu Y; Li J; Li Z; Zhang J; Cao Q; Hou W; Du LL; Liu B; Lou H
    PLoS Genet; 2019 Aug; 15(8):e1008136. PubMed ID: 31381575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
    Travesa A; Duch A; Quintana DG
    J Biol Chem; 2008 Jun; 283(25):17123-30. PubMed ID: 18441009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint.
    van Brabant AJ; Buchanan CD; Charboneau E; Fangman WL; Brewer BJ
    Mol Cell; 2001 Apr; 7(4):705-13. PubMed ID: 11336695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orchestration of the S-phase and DNA damage checkpoint pathways by replication forks from early origins.
    Caldwell JM; Chen Y; Schollaert KL; Theis JF; Babcock GF; Newlon CS; Sanchez Y
    J Cell Biol; 2008 Mar; 180(6):1073-86. PubMed ID: 18347065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mec1-independent activation of the Rad53 checkpoint kinase revealed by quantitative analysis of protein localization dynamics.
    Ho B; Sanford EJ; Loll-Krippleber R; Torres NP; Smolka MB; Brown GW
    Elife; 2023 Jun; 12():. PubMed ID: 37278514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinase's work is never done: Rad53 monitors chromatin near replication origins.
    Formosa T
    Cell Cycle; 2011 Feb; 10(4):573-4. PubMed ID: 21311236
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional and physical interactions between yeast 14-3-3 proteins, acetyltransferases, and deacetylases in response to DNA replication perturbations.
    Lottersberger F; Panza A; Lucchini G; Longhese MP
    Mol Cell Biol; 2007 May; 27(9):3266-81. PubMed ID: 17339336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotoxic stress prevents Ndd1-dependent transcriptional activation of G2/M-specific genes in Saccharomyces cerevisiae.
    Yelamanchi SK; Veis J; Anrather D; Klug H; Ammerer G
    Mol Cell Biol; 2014 Feb; 34(4):711-24. PubMed ID: 24324010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Checkpoint adaptation; molecular mechanisms uncovered.
    Lupardus PJ; Cimprich KA
    Cell; 2004 May; 117(5):555-6. PubMed ID: 15163402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.