These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22895532)

  • 1. Charge-transfer interaction mediated organogels from bile acid appended anthracenes: rheological and microscopic studies.
    Kandanelli R; Maitra U
    Photochem Photobiol Sci; 2012 Nov; 11(11):1724-9. PubMed ID: 22895532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organogels from dimeric bile acid esters: in situ formation of gold nanoparticles.
    Chakrabarty A; Maitra U
    J Phys Chem B; 2013 Jul; 117(26):8039-46. PubMed ID: 23751127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene.
    Hu J; Wu J; Wang Q; Ju Y
    Beilstein J Org Chem; 2013; 9():2877-85. PubMed ID: 24367453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities.
    Samanta SK; Pal A; Bhattacharya S
    Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.
    Patel AR; Babaahmadi M; Lesaffer A; Dewettinck K
    J Agric Food Chem; 2015 May; 63(19):4862-9. PubMed ID: 25932656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instant gels from mixtures of amines and anhydrides at room temperature.
    Mahapatra RD; Dey J
    Colloids Surf B Biointerfaces; 2016 Nov; 147():422-433. PubMed ID: 27566227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical self-assembly of photoluminescent CdS nanoparticles into a bile acid derived organogel: morphological and photophysical properties.
    Chatterjee S; Maitra U
    Phys Chem Chem Phys; 2017 Jul; 19(27):17726-17734. PubMed ID: 28657088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Birefringent physical gels of N-(4-n-alkyloxybenzoyl)-L-alanine amphiphiles in organic solvents: the role of hydrogen-bonding.
    Patra T; Pal A; Dey J
    J Colloid Interface Sci; 2010 Apr; 344(1):10-20. PubMed ID: 20097349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoengineering of a biocompatible organogel by thermal processing.
    Li JL; Wang RY; Liu XY; Pan HH
    J Phys Chem B; 2009 Apr; 113(15):5011-5. PubMed ID: 19309102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel.
    Adhikari B; Nanda J; Banerjee A
    Chemistry; 2011 Oct; 17(41):11488-96. PubMed ID: 21953927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled organogels formed by L-leucine dihydrazide derivative.
    Yu Y; Song N; Jin S; Shi W; Zhai Y; Wang C
    Acta Chim Slov; 2013; 60(3):644-50. PubMed ID: 24169719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-transfer phenomena in novel, dual-component, sugar-based organogels.
    Friggeri A; Gronwald O; van Bommel KJ; Shinkai S; Reinhoudt DN
    J Am Chem Soc; 2002 Sep; 124(36):10754-8. PubMed ID: 12207530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical gelation of binary mixtures of hydrocarbons mediated by n-lauroyl-L-alanine and characterization of their thermal and mechanical properties.
    Bhattacharya S; Pal A
    J Phys Chem B; 2008 Apr; 112(16):4918-27. PubMed ID: 18373372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic salts and aromatic substrates in two-component gel phase formation: the study of properties and release processes.
    Vitale P; D'Anna F; Marullo S; Noto R
    Soft Matter; 2015 Sep; 11(33):6652-62. PubMed ID: 26212238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-induced physical gelation of organic solvents by N-(n-alkylcarbamoyl)-L-alanine amphiphiles.
    Pal A; Dey J
    Langmuir; 2011 Apr; 27(7):3401-8. PubMed ID: 21351761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological properties of protein-surfactant based gels.
    Roversi M; La Mesa C
    J Colloid Interface Sci; 2005 Apr; 284(2):470-6. PubMed ID: 15780284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organogels from different self-assembling new dendritic peptides: morphology, rheology, and structural investigations.
    Palui G; Garai A; Nanda J; Nandi AK; Banerjee A
    J Phys Chem B; 2010 Jan; 114(3):1249-56. PubMed ID: 20041726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of aggregation induced emission enhancement and keto-enol-tautomerism in a gallic acid derived salicylideneaniline gel.
    Datta S; Bhattacharya S
    Chem Commun (Camb); 2012 Jan; 48(6):877-9. PubMed ID: 22124279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid gels assembled from Fmoc-amino acid and graphene oxide with controllable properties.
    Xing P; Chu X; Li S; Ma M; Hao A
    Chemphyschem; 2014 Aug; 15(11):2377-85. PubMed ID: 24789749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent/gelator interactions and supramolecular structure of gel fibers in cyclic bis-urea/primary alcohol organogels.
    Jeong Y; Hanabusa K; Masunaga H; Akiba I; Miyoshi K; Sakurai S; Sakurai K
    Langmuir; 2005 Jan; 21(2):586-94. PubMed ID: 15641827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.