These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22895607)

  • 1. Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance.
    Lee SH; Lindquist NC; Wittenberg NJ; Jordan LR; Oh SH
    Lab Chip; 2012 Oct; 12(20):3882-90. PubMed ID: 22895607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics.
    Im H; Sutherland JN; Maynard JA; Oh SH
    Anal Chem; 2012 Feb; 84(4):1941-7. PubMed ID: 22235895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing.
    Lesuffleur A; Im H; Lindquist NC; Lim KS; Oh SH
    Opt Express; 2008 Jan; 16(1):219-24. PubMed ID: 18521151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new surface plasmon resonance sensor for high-throughput screening applications.
    Piliarik M; Vaisocherová H; Homola J
    Biosens Bioelectron; 2005 Apr; 20(10):2104-10. PubMed ID: 15741081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SU-8 polymer enclosed microchannels with interconnect and nanohole arrays as an optical detection device for biospecies.
    Westwood SM; Gray BL; Grist S; Huffman K; Jaffer S; Kavanagh KL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5652-5. PubMed ID: 19163999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned resonance plasmonic microarrays for high-performance SPR imaging.
    Abbas A; Linman MJ; Cheng Q
    Anal Chem; 2011 Apr; 83(8):3147-52. PubMed ID: 21417424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates.
    Taylor JD; Phillips KS; Cheng Q
    Lab Chip; 2007 Jul; 7(7):927-30. PubMed ID: 17594015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation.
    Lindquist NC; Lesuffleur A; Im H; Oh SH
    Lab Chip; 2009 Feb; 9(3):382-7. PubMed ID: 19156286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Extracellular Vesicles by Surface Plasmon Resonance.
    Im H; Yang K; Lee H; Castro CM
    Methods Mol Biol; 2017; 1660():133-141. PubMed ID: 28828653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications.
    Wang DS; Fan SK
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27472340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanohole arrays for label-free kinetic biosensing in a lipid membrane environment.
    Lesuffleur A; Lim KS; Lindquist NC; Im H; Warrington AE; Rodriguez M; Oh SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1481-4. PubMed ID: 19963504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing.
    Im H; Lee SH; Wittenberg NJ; Johnson TW; Lindquist NC; Nagpal P; Norris DJ; Oh SH
    ACS Nano; 2011 Aug; 5(8):6244-53. PubMed ID: 21770414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry.
    Vala M; Ertsgaard CT; Wittenberg NJ; Oh SH
    ACS Sens; 2019 Dec; 4(12):3265-3274. PubMed ID: 31762262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing.
    Im H; Lesuffleur A; Lindquist NC; Oh SH
    Anal Chem; 2009 Apr; 81(8):2854-9. PubMed ID: 19284776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerable tethered bilayer lipid membrane arrays for multiplexed label-free analysis of lipid-protein interactions on poly(dimethylsiloxane) microchips using SPR imaging.
    Taylor JD; Linman MJ; Wilkop T; Cheng Q
    Anal Chem; 2009 Feb; 81(3):1146-53. PubMed ID: 19178341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride.
    Williams TL; Jenkins AT
    J Am Chem Soc; 2008 May; 130(20):6438-43. PubMed ID: 18412339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance.
    Kuziemko GM; Stroh M; Stevens RC
    Biochemistry; 1996 May; 35(20):6375-84. PubMed ID: 8639583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.