These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22895652)

  • 21. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of plant size and weather on the flowering phenology of the organ pipe cactus (Stenocereus thurberi).
    Bustamante E; Búrquez A
    Ann Bot; 2008 Dec; 102(6):1019-30. PubMed ID: 18854374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reproductive phenology of 233 species from four herbaceous-shrubby communities in the Gran Sabana Plateau of Venezuela.
    Ramírez N; Briceño H
    AoB Plants; 2011; 2011():plr014. PubMed ID: 22476484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of elevated CO₂, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status.
    Albert KR; Ro-Poulsen H; Mikkelsen TN; Michelsen A; Van Der Linden L; Beier C
    Plant Cell Environ; 2011 Jul; 34(7):1207-22. PubMed ID: 21410715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field.
    Walter J; Kreyling J; Singh BK; Jentsch A
    Plant Biol (Stuttg); 2016 Mar; 18(2):262-70. PubMed ID: 26284575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology.
    Butt N; Seabrook L; Maron M; Law BS; Dawson TP; Syktus J; McAlpine CA
    Glob Chang Biol; 2015 Sep; 21(9):3267-77. PubMed ID: 25605302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-lagged effects of weather on plant demography: drought and Astragalus scaphoides.
    Tenhumberg B; Crone EE; Ramula S; Tyre AJ
    Ecology; 2018 Apr; 99(4):915-925. PubMed ID: 29380874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora.
    Bernal M; Estiarte M; Peñuelas J
    Plant Biol (Stuttg); 2011 Mar; 13(2):252-7. PubMed ID: 21309971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of timing of growing season drought on flowering of a dominant C4 grass.
    Dietrich JD; Smith MD
    Oecologia; 2016 Jun; 181(2):391-9. PubMed ID: 26886131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate data and flowering times for 450 species from 1844 deepen the record of phenological change in southern Germany.
    Renner SS; Wesche M; Zohner CM
    Am J Bot; 2021 Apr; 108(4):711-717. PubMed ID: 33901306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years.
    Dunnell KL; Travers SE
    Am J Bot; 2011 Jun; 98(6):935-45. PubMed ID: 21613073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flowering phenological changes in relation to climate change in Hungary.
    Szabó B; Vincze E; Czúcz B
    Int J Biometeorol; 2016 Sep; 60(9):1347-56. PubMed ID: 26768142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying the importance of day length in process-based models for the prediction of temperate spring flowering phenology.
    Kim S; Kim TK; Yoon S; Jang K; Chun JH; Won M; Lim JH; Kim HS
    Sci Total Environ; 2022 Oct; 843():156780. PubMed ID: 35724787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Future changes in fire weather, spring droughts, and false springs across U.S. National Forests and Grasslands.
    Martinuzzi S; Allstadt AJ; Pidgeon AM; Flather CH; Jolly WM; Radeloff VC
    Ecol Appl; 2019 Jul; 29(5):e01904. PubMed ID: 30980571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Daily weather generator with drought properties by copulas and standardized precipitation indices.
    Hong NM; Lee TY; Chen YJ
    Environ Monit Assess; 2016 Jun; 188(6):383. PubMed ID: 27245603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anthropogenic warming has increased drought risk in California.
    Diffenbaugh NS; Swain DL; Touma D
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):3931-6. PubMed ID: 25733875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.
    Kopp CW; Cleland EE
    PLoS One; 2015; 10(9):e0139029. PubMed ID: 26402617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.