BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22895709)

  • 1. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis.
    Ryan K; Backos DS; Reigan P; Patel M
    J Neurosci; 2012 Aug; 32(33):11250-8. PubMed ID: 22895709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction and ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus in the rat.
    Chuang YC; Chang AY; Lin JW; Hsu SP; Chan SH
    Epilepsia; 2004 Oct; 45(10):1202-9. PubMed ID: 15461674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy.
    Gano LB; Liang LP; Ryan K; Michel CR; Gomez J; Vassilopoulos A; Reisdorph N; Fritz KS; Patel M
    Free Radic Biol Med; 2018 Aug; 123():116-124. PubMed ID: 29778462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis.
    Waldbaum S; Liang LP; Patel M
    J Neurochem; 2010 Dec; 115(5):1172-82. PubMed ID: 21219330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-Translational Oxidative Modifications of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase): Implications for Pathogenesis and Therapeutics in Human Diseases.
    Srinivas Bharath MM
    J Alzheimers Dis; 2017; 60(s1):S69-S86. PubMed ID: 28582861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy.
    Rowley S; Liang LP; Fulton R; Shimizu T; Day B; Patel M
    Neurobiol Dis; 2015 Mar; 75():151-8. PubMed ID: 25600213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis.
    Folbergrová J; Ješina P; Kubová H; Otáhal J
    Mol Neurobiol; 2018 Sep; 55(9):7512-7522. PubMed ID: 29427088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.
    Kaur P; Radotra B; Minz RW; Gill KD
    Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in cytochrome c oxidase activity and energy metabolites in response to kainic acid-induced status epilepticus.
    Milatovic D; Zivin M; Gupta RC; Dettbarn WD
    Brain Res; 2001 Aug; 912(1):67-78. PubMed ID: 11520494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy.
    Ryan K; Liang LP; Rivard C; Patel M
    Neurobiol Dis; 2014 Apr; 64():8-15. PubMed ID: 24361554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain.
    Hopkins KJ; Wang G; Schmued LC
    Brain Res; 2000 May; 864(1):69-80. PubMed ID: 10793188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting of microRNA-21-5p protects against seizure damage in a kainic acid-induced status epilepticus model via PTEN-mTOR.
    Tang C; Gu Y; Wang H; Wu H; Wang Y; Meng Y; Han Z; Gu Y; Ma W; Jiang Z; Song Y; Na M; Lu D; Lin Z
    Epilepsy Res; 2018 Aug; 144():34-42. PubMed ID: 29751355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic identification of hippocampal proteins vulnerable to oxidative stress in excitotoxin-induced acute neuronal injury.
    Furukawa A; Kawamoto Y; Chiba Y; Takei S; Hasegawa-Ishii S; Kawamura N; Yoshikawa K; Hosokawa M; Oikawa S; Kato M; Shimada A
    Neurobiol Dis; 2011 Sep; 43(3):706-14. PubMed ID: 21669285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domoic acid impairment of cardiac energetics.
    Vranyac-Tramoundanas A; Harrison JC; Clarkson AN; Kapoor M; Winburn IC; Kerr DS; Sammut IA
    Toxicol Sci; 2008 Oct; 105(2):395-407. PubMed ID: 18596025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic and hippocampal cytochrome P450 enzyme overexpression during spontaneous recurrent seizures.
    Runtz L; Girard B; Toussenot M; Espallergues J; Fayd'Herbe De Maudave A; Milman A; deBock F; Ghosh C; Guérineau NC; Pascussi JM; Bertaso F; Marchi N
    Epilepsia; 2018 Jan; 59(1):123-134. PubMed ID: 29125184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-dependent effects of long-term treatment with melatonin on kainic acid-induced status epilepticus, oxidative stress and the expression of heat shock proteins.
    Atanasova M; Petkova Z; Pechlivanova D; Dragomirova P; Blazhev A; Tchekalarova J
    Pharmacol Biochem Behav; 2013 Oct; 111():44-50. PubMed ID: 23978502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy.
    Narkilahti S; Pitkänen A
    Neuroscience; 2005; 131(4):887-97. PubMed ID: 15749343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid.
    Folbergrová J; Jesina P; Haugvicová R; Lisý V; Houstek J
    Neurochem Int; 2010 Feb; 56(3):394-403. PubMed ID: 19931336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal assessment of blood-brain barrier leakage during epileptogenesis in rats. A quantitative MRI study.
    van Vliet EA; Otte WM; Gorter JA; Dijkhuizen RM; Wadman WJ
    Neurobiol Dis; 2014 Mar; 63():74-84. PubMed ID: 24321435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Akt Inhibitor Perifosine Prevents Epileptogenesis in a Rat Model of Temporal Lobe Epilepsy.
    Zhu F; Kai J; Chen L; Wu M; Dong J; Wang Q; Zeng LH
    Neurosci Bull; 2018 Apr; 34(2):283-290. PubMed ID: 28786074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.