BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 22895726)

  • 1. Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission.
    Weston MC; Chen H; Swann JW
    J Neurosci; 2012 Aug; 32(33):11441-52. PubMed ID: 22895726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unbalance of CB1 receptors expressed in GABAergic and glutamatergic neurons in a transgenic mouse model of Huntington's disease.
    Chiodi V; Uchigashima M; Beggiato S; Ferrante A; Armida M; Martire A; Potenza RL; Ferraro L; Tanganelli S; Watanabe M; Domenici MR; Popoli P
    Neurobiol Dis; 2012 Mar; 45(3):983-91. PubMed ID: 22207189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1.
    Peixoto RT; Kunz PA; Kwon H; Mabb AM; Sabatini BL; Philpot BD; Ehlers MD
    Neuron; 2012 Oct; 76(2):396-409. PubMed ID: 23083741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei.
    Uusisaari M; Knöpfel T
    Neuroscience; 2008 Oct; 156(3):537-49. PubMed ID: 18755250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength.
    Arons MH; Lee K; Thynne CJ; Kim SA; Schob C; Kindler S; Montgomery JM; Garner CC
    J Neurosci; 2016 Aug; 36(35):9124-34. PubMed ID: 27581454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors.
    Lozada AF; Wang X; Gounko NV; Massey KA; Duan J; Liu Z; Berg DK
    J Neurosci; 2012 May; 32(22):7651-61. PubMed ID: 22649244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum.
    Ibáñez-Sandoval O; Tecuapetla F; Unal B; Shah F; Koós T; Tepper JM
    J Neurosci; 2010 May; 30(20):6999-7016. PubMed ID: 20484642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine.
    Ellender TJ; Huerta-Ocampo I; Deisseroth K; Capogna M; Bolam JP
    J Neurosci; 2011 Oct; 31(43):15340-51. PubMed ID: 22031880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal Nogo-A regulates glutamate receptor subunit expression in hippocampal neurons.
    Peng X; Kim J; Zhou Z; Fink DJ; Mata M
    J Neurochem; 2011 Dec; 119(6):1183-93. PubMed ID: 21985178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons.
    Luthi A; Di Paolo G; Cremona O; Daniell L; De Camilli P; McCormick DA
    J Neurosci; 2001 Dec; 21(23):9101-11. PubMed ID: 11717343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamatergic Innervation onto Striatal Neurons Potentiates GABAergic Synaptic Output.
    Paraskevopoulou F; Herman MA; Rosenmund C
    J Neurosci; 2019 Jun; 39(23):4448-4460. PubMed ID: 30936241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons.
    Kaufman AM; Milnerwood AJ; Sepers MD; Coquinco A; She K; Wang L; Lee H; Craig AM; Cynader M; Raymond LA
    J Neurosci; 2012 Mar; 32(12):3992-4003. PubMed ID: 22442066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early synapse formation in developing interneurons of the adult olfactory bulb.
    Panzanelli P; Bardy C; Nissant A; Pallotto M; Sassoè-Pognetto M; Lledo PM; Fritschy JM
    J Neurosci; 2009 Dec; 29(48):15039-52. PubMed ID: 19955355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors.
    Elmariah SB; Oh EJ; Hughes EG; Balice-Gordon RJ
    J Neurosci; 2005 Apr; 25(14):3638-50. PubMed ID: 15814795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse.
    Apostolides PF; Trussell LO
    J Neurosci; 2013 Mar; 33(11):4768-81. PubMed ID: 23486948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities.
    Fraser MM; Bayazitov IT; Zakharenko SS; Baker SJ
    Neuroscience; 2008 Jan; 151(2):476-88. PubMed ID: 18082964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors.
    Riffault B; Medina I; Dumon C; Thalman C; Ferrand N; Friedel P; Gaiarsa JL; Porcher C
    J Neurosci; 2014 Oct; 34(40):13516-34. PubMed ID: 25274828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory synapses in the developing auditory system are glutamatergic.
    Gillespie DC; Kim G; Kandler K
    Nat Neurosci; 2005 Mar; 8(3):332-8. PubMed ID: 15746915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of inhibitory synaptic transmission in large aspiny neurons after transient cerebral ischemia.
    Li Y; Lei Z; Xu ZC
    Neuroscience; 2009 Mar; 159(2):670-81. PubMed ID: 19167464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell type-specific, presynaptic LTP of inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual cortex.
    Sarihi A; Mirnajafi-Zadeh J; Jiang B; Sohya K; Safari MS; Arami MK; Yanagawa Y; Tsumoto T
    J Neurosci; 2012 Sep; 32(38):13189-99. PubMed ID: 22993435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.