These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22895754)

  • 1. Non-invasive flux measurements using microsensors: theory, limitations, and systems.
    Newman I; Chen SL; Porterfield DM; Sun J
    Methods Mol Biol; 2012; 913():101-17. PubMed ID: 22895754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying kinetics of net ion fluxes from plant tissues by non-invasive microelectrode measuring MIFE technique.
    Shabala S; Cuin TA; Shabala L; Newman I
    Methods Mol Biol; 2012; 913():119-34. PubMed ID: 22895755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multielectrode bisensor system for time-resolved monitoring of ion transport across an epithelial cell layer.
    Toczyłowska-Mamińska R; Lewenstam A; Dołowy K
    Anal Chem; 2014 Jan; 86(1):390-4. PubMed ID: 24283934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion flux measurements using the MIFE technique.
    Shabala S; Shabala L; Bose J; Cuin T; Newman I
    Methods Mol Biol; 2013; 953():171-83. PubMed ID: 23073883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications.
    Shabala S; Shabala L; Gradmann D; Chen Z; Newman I; Mancuso S
    J Exp Bot; 2006; 57(1):171-84. PubMed ID: 16330526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment.
    Shabala L; Ross T; McMeekin T; Shabala S
    FEMS Microbiol Rev; 2006 May; 30(3):472-86. PubMed ID: 16594966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming the problem of non-ideal liquid ion exchanger selectivity in microelectrode ion flux measurements.
    Knowles A; Shabala S
    J Membr Biol; 2004 Nov; 202(1):51-9. PubMed ID: 15702379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function.
    Newman IA
    Plant Cell Environ; 2001 Jan; 24(1):1-14. PubMed ID: 11762438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion channels in plants.
    Hedrich R
    Physiol Rev; 2012 Oct; 92(4):1777-811. PubMed ID: 23073631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux.
    Smith PJ; Hammar K; Porterfield DM; Sanger RH; Trimarchi JR
    Microsc Res Tech; 1999 Sep; 46(6):398-417. PubMed ID: 10504217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction, theory, and practical considerations for using self-referencing of Ca(2+)-selective microelectrodes for monitoring extracellular Ca(2+) gradients.
    Messerli MA; Smith PJ
    Methods Cell Biol; 2010; 99():91-111. PubMed ID: 21035684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems.
    McLamore ES; Jaroch D; Chatni MR; Porterfield DM
    Planta; 2010 Oct; 232(5):1087-99. PubMed ID: 20697740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous flux and current measurement from single plant protoplasts reveals a strong link between K+ fluxes and current, but no link between Ca2+ fluxes and current.
    Gilliham M; Sullivan W; Tester M; Tyerman SD
    Plant J; 2006 Apr; 46(1):134-44. PubMed ID: 16553901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current-driven ion fluxes of polymeric membrane ion-selective electrode for potentiometric biosensing.
    Ding J; Qin W
    J Am Chem Soc; 2009 Oct; 131(41):14640-1. PubMed ID: 19785410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiologically relevant measurements of nitric oxide in cardiovascular research using electrochemical microsensors.
    Wadsworth R; Stankevicius E; Simonsen U
    J Vasc Res; 2006; 43(1):70-85. PubMed ID: 16276114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion flux interaction with cytoplasmic streaming in branchlets of Chara australis.
    Babourina O; Voltchanskii K; Newman I
    J Exp Bot; 2004 Dec; 55(408):2505-12. PubMed ID: 15361532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring liquid transport and chemical composition in lab on a chip systems using ion sensitive FET devices.
    Truman P; Uhlmann P; Stamm M
    Lab Chip; 2006 Sep; 6(9):1220-8. PubMed ID: 16929402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive ion probes--tools for measuring transmembrane ion flux.
    Smith PJ
    Nature; 1995 Dec; 378(6557):645-6. PubMed ID: 8524403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique.
    McLamore ES; Diggs A; Calvo Marzal P; Shi J; Blakeslee JJ; Peer WA; Murphy AS; Porterfield DM
    Plant J; 2010 Sep; 63(6):1004-16. PubMed ID: 20626658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of CFTR chloride channel activity and pharmacology using radiotracer flux methods.
    Norez C; Heda GD; Jensen T; Kogan I; Hughes LK; Auzanneau C; Dérand R; Bulteau-Pignoux L; Li C; Ramjeesingh M; Li H; Sheppard DN; Bear CE; Riordan JR; Becq F
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():119-21. PubMed ID: 15463942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.