These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22895763)

  • 1. Determination of reactive oxygen species in salt-stressed plant tissues.
    Rodríguez AA; Taleisnik EL
    Methods Mol Biol; 2012; 913():225-36. PubMed ID: 22895763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana.
    Smith CA; Melino VJ; Sweetman C; Soole KL
    Physiol Plant; 2009 Dec; 137(4):459-72. PubMed ID: 19941623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of the antioxidant activity in salt-stressed tissues.
    Maksimović JJ; Zivanović BD
    Methods Mol Biol; 2012; 913():237-50. PubMed ID: 22895764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
    Miller G; Suzuki N; Ciftci-Yilmaz S; Mittler R
    Plant Cell Environ; 2010 Apr; 33(4):453-67. PubMed ID: 19712065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotechnological approach of improving plant salt tolerance using antioxidants as markers.
    Ashraf M
    Biotechnol Adv; 2009; 27(1):84-93. PubMed ID: 18950697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of abscisic Acid, cytokinin, and auxin content in salt-stressed plant tissues.
    Dobrev PI; Vankova R
    Methods Mol Biol; 2012; 913():251-61. PubMed ID: 22895765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of mitochondrial respiration in salinity tolerance.
    Jacoby RP; Taylor NL; Millar AH
    Trends Plant Sci; 2011 Nov; 16(11):614-23. PubMed ID: 21903446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance.
    Asano T; Hayashi N; Kobayashi M; Aoki N; Miyao A; Mitsuhara I; Ichikawa H; Komatsu S; Hirochika H; Kikuchi S; Ohsugi R
    Plant J; 2012 Jan; 69(1):26-36. PubMed ID: 21883553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alleviation of salt stress in wheat seedlings by mammalian sex hormones.
    Erdal S
    J Sci Food Agric; 2012 May; 92(7):1411-6. PubMed ID: 22102166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network.
    Quan LJ; Zhang B; Shi WW; Li HY
    J Integr Plant Biol; 2008 Jan; 50(1):2-18. PubMed ID: 18666947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity.
    Rodríguez AA; Córdoba AR; Ortega L; Taleisnik E
    J Exp Bot; 2004 Jun; 55(401):1383-90. PubMed ID: 15155779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance.
    Leshem Y; Seri L; Levine A
    Plant J; 2007 Jul; 51(2):185-97. PubMed ID: 17521408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).
    Shabala L; Mackay A; Tian Y; Jacobsen SE; Zhou D; Shabala S
    Physiol Plant; 2012 Sep; 146(1):26-38. PubMed ID: 22324972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of high salinity tolerance in plants.
    Tuteja N
    Methods Enzymol; 2007; 428():419-38. PubMed ID: 17875432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice.
    Mito T; Seki M; Shinozaki K; Ohme-Takagi M; Matsui K
    Plant Biotechnol J; 2011 Sep; 9(7):736-46. PubMed ID: 21114612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress.
    Abogadallah GM; Serag MM; Quick WP
    Physiol Plant; 2010 Jan; 138(1):60-73. PubMed ID: 20070844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes.
    Habib SH; Kausar H; Saud HM
    Biomed Res Int; 2016; 2016():6284547. PubMed ID: 26951880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana.
    Sakamoto H; Matsuda O; Iba K
    Plant J; 2008 Nov; 56(3):411-22. PubMed ID: 18643991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity.
    Shoresh M; Spivak M; Bernstein N
    Free Radic Biol Med; 2011 Sep; 51(6):1221-34. PubMed ID: 21466848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.