BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22895766)

  • 1. Fluorescence-activated cell sorting for analysis of cell type-specific responses to salinity stress in Arabidopsis and rice.
    Evrard A; Bargmann BO; Birnbaum KD; Tester M; Baumann U; Johnson AA
    Methods Mol Biol; 2012; 913():265-76. PubMed ID: 22895766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1.
    Plett D; Safwat G; Gilliham M; Skrumsager Møller I; Roy S; Shirley N; Jacobs A; Johnson A; Tester M
    PLoS One; 2010 Sep; 5(9):e12571. PubMed ID: 20838445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over-expression of a plasma membrane H
    Fan Y; Wan S; Jiang Y; Xia Y; Chen X; Gao M; Cao Y; Luo Y; Zhou Y; Jiang X
    Protoplasma; 2018 Nov; 255(6):1827-1837. PubMed ID: 29948367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis.
    Yokotani N; Ichikawa T; Kondou Y; Matsui M; Hirochika H; Iwabuchi M; Oda K
    Planta; 2009 Apr; 229(5):1065-75. PubMed ID: 19225807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins.
    Park YC; Lim SD; Moon JC; Jang CS
    Plant Cell Environ; 2019 Nov; 42(11):3061-3076. PubMed ID: 31325169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of OsWNK9 in Arabidopsis conferred tolerance to salt and drought stress.
    Manuka R; Saddhe AA; Kumar K
    Plant Sci; 2018 May; 270():58-71. PubMed ID: 29576087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants.
    Tiwari LD; Mittal D; Chandra Mishra R; Grover A
    Plant Physiol Biochem; 2015 Jul; 92():48-55. PubMed ID: 25910649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the rice transcription factor JAmyb in abiotic stress response.
    Yokotani N; Ichikawa T; Kondou Y; Iwabuchi M; Matsui M; Hirochika H; Oda K
    J Plant Res; 2013 Jan; 126(1):131-9. PubMed ID: 22847900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice.
    Mito T; Seki M; Shinozaki K; Ohme-Takagi M; Matsui K
    Plant Biotechnol J; 2011 Sep; 9(7):736-46. PubMed ID: 21114612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating tissue- and organ-specific phytochrome responses using FACS-assisted cell-type specific expression profiling in Arabidopsis thaliana.
    Warnasooriya SN; Montgomery BL
    J Vis Exp; 2010 May; (39):. PubMed ID: 20517200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice.
    Yu C; Liu Y; Zhang A; Su S; Yan A; Huang L; Ali I; Liu Y; Forde BG; Gan Y
    PLoS One; 2015; 10(8):e0135196. PubMed ID: 26258667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis.
    Cho HY; Lee C; Hwang SG; Park YC; Lim HL; Jang CS
    Gene; 2014 Nov; 552(1):98-105. PubMed ID: 25218040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.).
    Krishnamurthy P; Ranathunge K; Franke R; Prakash HS; Schreiber L; Mathew MK
    Planta; 2009 Jun; 230(1):119-34. PubMed ID: 19363620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong expression of the rice catalase gene CatB promoter in protoplasts and roots of both a monocot and dicots.
    Iwamoto M; Higo H; Higo K
    Plant Physiol Biochem; 2004 Mar; 42(3):241-9. PubMed ID: 15051048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A.
    Alvarez-Gerding X; Espinoza C; Inostroza-Blancheteau C; Arce-Johnson P
    Plant Physiol Biochem; 2015 Jul; 92():71-80. PubMed ID: 25914135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress.
    Nath M; Yadav S; Kumar Sahoo R; Passricha N; Tuteja R; Tuteja N
    J Plant Physiol; 2016 Feb; 191():1-11. PubMed ID: 26687010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-Specific Transcriptome Profiling in Arabidopsis Roots.
    Sparks EE; Benfey PN
    Methods Mol Biol; 2017; 1610():107-122. PubMed ID: 28439860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice.
    Li X; Hou S; Gao Q; Zhao P; Chen S; Qi D; Lee BH; Cheng L; Liu G
    Plant Cell Physiol; 2013 Jul; 54(7):1172-85. PubMed ID: 23695503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell specific analysis of Arabidopsis leaves using fluorescence activated cell sorting.
    Grønlund JT; Eyres A; Kumar S; Buchanan-Wollaston V; Gifford ML
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23070217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis.
    Xu GY; Rocha PS; Wang ML; Xu ML; Cui YC; Li LY; Zhu YX; Xia X
    Planta; 2011 Jul; 234(1):47-59. PubMed ID: 21359958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.