These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22897148)

  • 1. Nonlinear model for estimating respiratory volume based on thoracoabdominal breathing movements.
    Raoufy MR; Hajizadeh S; Gharibzadeh S; Mani AR; Eftekhari P; Masjedi MR
    Respirology; 2013 Jan; 18(1):108-16. PubMed ID: 22897148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scope of linear estimators of tidal and occluded volumes using thoracoabdominal indications of breathing movement coordination.
    Millard RK; Black AM
    Med Eng Phys; 2004 Apr; 26(3):225-35. PubMed ID: 14984844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of respiratory inductive plethysmography during quiet and active sleep in lambs.
    Warren RH; Fewell JE; Alderson SH
    J Dev Physiol; 1989 Dec; 12(6):347-52. PubMed ID: 2640229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early experience with remote pressure sensor respiratory plethysmography monitoring sedation in the MR scanner.
    Caldiroli D; Minati L
    Eur J Anaesthesiol; 2007 Sep; 24(9):761-9. PubMed ID: 17517150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of respiratory inductive plethysmograph over wide range of rib cage and abdominal compartmental contributions to tidal volume in normal subjects and in patients with chronic obstructive pulmonary disease.
    Gonzalez H; Haller B; Watson HL; Sackner MA
    Am Rev Respir Dis; 1984 Aug; 130(2):171-4. PubMed ID: 6465670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Computer-assisted calibration of inductive plethysmography].
    Tomalak W; Willim G; Kapustianyk I; Hałuszka J
    Pneumonol Alergol Pol; 1991; 59(5-6):181-6. PubMed ID: 1843919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume rather than flow incentive spirometry is effective in improving chest wall expansion and abdominal displacement using optoelectronic plethysmography.
    Paisani Dde M; Lunardi AC; da Silva CC; Porras DC; Tanaka C; Carvalho CR
    Respir Care; 2013 Aug; 58(8):1360-6. PubMed ID: 23258579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning.
    Dumond R; Gastinger S; Rahman HA; Le Faucheur A; Quinton P; Kang H; Prioux J
    Eur J Appl Physiol; 2017 Aug; 117(8):1533-1555. PubMed ID: 28612121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory inductive plethysmography to assess respiratory variability and complexity in humans.
    Fiamma MN; Samara Z; Baconnier P; Similowski T; Straus C
    Respir Physiol Neurobiol; 2007 May; 156(2):234-9. PubMed ID: 17251070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between exhaled breath condensate volume and measurements of lung volumes.
    Liu J; Thomas PS
    Respiration; 2007; 74(2):142-5. PubMed ID: 16804290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated respiratory inductive plethysmography to evaluate breathing in infants at risk for postoperative apnea.
    Brown KA; Aoude AA; Galiana HL; Kearney RE
    Can J Anaesth; 2008 Nov; 55(11):739-47. PubMed ID: 19138913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Error analysis of a natural breathing calibration method for respiratory inductive plethysmography.
    Strömberg NO
    Med Biol Eng Comput; 2001 May; 39(3):310-4. PubMed ID: 11465885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of respiratory inductive plethysmography in spontaneously breathing lambs and piglets.
    Warren RH; Alderson SH
    J Dev Physiol; 1986 Aug; 8(4):255-8. PubMed ID: 3760483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hilbert-Huang Transform Yields Improved Minute Volume Estimates from Respiratory Inductance Plethysmography During Transitions to Paradoxical Breathing.
    Mandel JE; Atkins JH
    Anesth Analg; 2016 Jan; 122(1):126-31. PubMed ID: 26397445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive partitioning of respiratory volumes and time constants in ventilated patients.
    Dall'Ava-Santucci J; Brunet F; Nouira S; Armaganidis A; Dhainaut JF; Monsallier JF; Lockhart A
    Eur Respir J; 1992 Sep; 5(8):1009-17. PubMed ID: 1426191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tidal volume measurements in newborns using respiratory inductive plethysmography.
    Adams JA; Zabaleta IA; Stroh D; Johnson P; Sackner MA
    Am Rev Respir Dis; 1993 Sep; 148(3):585-88. PubMed ID: 8368627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key to better qualitative diagnostic calibrations in respiratory inductive plethysmography.
    Millard RK
    Physiol Meas; 2002 May; 23(2):N1-8. PubMed ID: 12051317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological definition of upper airway obstructions in mouse model for Rett syndrome.
    Voituron N; Menuet C; Dutschmann M; Hilaire G
    Respir Physiol Neurobiol; 2010 Sep; 173(2):146-56. PubMed ID: 20659592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of total and compartmental lung volume changes in newborns by optoelectronic plethysmography.
    Dellaca' RL; Ventura ML; Zannin E; Natile M; Pedotti A; Tagliabue P
    Pediatr Res; 2010 Jan; 67(1):11-6. PubMed ID: 19755932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Optoelectronic plethysmography -- a new technic to measure changes of chest wall volume].
    Skoczylas A; Sliwiński P
    Pneumonol Alergol Pol; 2007; 75(1):81-7. PubMed ID: 17541916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.