BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 22897252)

  • 21. Use of a dissociative potential to simulate hydration of Na+ and Cl- ions.
    Webb MB; Garofalini SH; Scherer GW
    J Phys Chem B; 2009 Jul; 113(29):9886-93. PubMed ID: 19569628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is the Solution Activity Derivative Sufficient to Parametrize Ion-Ion Interactions? Ions for TIP5P Water.
    Satarifard V; Kashefolgheta S; Vila Verde A; Grafmüller A
    J Chem Theory Comput; 2017 May; 13(5):2112-2122. PubMed ID: 28394606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.
    Kann ZR; Skinner JL
    J Chem Phys; 2014 Sep; 141(10):104507. PubMed ID: 25217937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density functional study of ion hydration for the alkali metal ions (Li+, Na+, K+) and the halide ions (F-, Br-, Cl-).
    Krekeler C; Hess B; Delle Site L
    J Chem Phys; 2006 Aug; 125(5):054305. PubMed ID: 16942211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective interaction potentials for alkali and alkaline earth metal ions in SPC/E water and polarization model of hydrated ions.
    Gavryushov S
    J Phys Chem B; 2006 Jun; 110(22):10888-95. PubMed ID: 16771341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A modified TIP3P water potential for simulation with Ewald summation.
    Price DJ; Brooks CL
    J Chem Phys; 2004 Nov; 121(20):10096-103. PubMed ID: 15549884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coarse-grained ions without charges: reproducing the solvation structure of NaCl in water using short-ranged potentials.
    DeMille RC; Molinero V
    J Chem Phys; 2009 Jul; 131(3):034107. PubMed ID: 19624181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Corrections in the CHARMM36 Parametrization of Chloride Interactions with Proteins, Lipids, and Alkali Cations, and Extension to Other Halide Anions.
    Orabi EA; Öztürk TN; Bernhardt N; Faraldo-Gómez JD
    J Chem Theory Comput; 2021 Oct; 17(10):6240-6261. PubMed ID: 34516741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A transferable ab initio based force field for aqueous ions.
    Tazi S; Molina JJ; Rotenberg B; Turq P; Vuilleumier R; Salanne M
    J Chem Phys; 2012 Mar; 136(11):114507. PubMed ID: 22443777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties.
    Grotz KK; Cruz-León S; Schwierz N
    J Chem Theory Comput; 2021 Apr; 17(4):2530-2540. PubMed ID: 33720710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The short range anion-H interaction is the driving force for crystal formation of ions in water.
    Alejandre J; Chapela GA; Bresme F; Hansen JP
    J Chem Phys; 2009 May; 130(17):174505. PubMed ID: 19425788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Empirical force fields for biologically active divalent metal cations in water.
    Babu CS; Lim C
    J Phys Chem A; 2006 Jan; 110(2):691-9. PubMed ID: 16405342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unraveling water's entropic mysteries: a unified view of nonpolar, polar, and ionic hydration.
    Ben-Amotz D; Underwood R
    Acc Chem Res; 2008 Aug; 41(8):957-67. PubMed ID: 18710198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force field for monovalent, divalent, and trivalent cations developed under the solvent boundary potential.
    Won Y
    J Phys Chem A; 2012 Nov; 116(47):11763-7. PubMed ID: 23102428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MST continuum study of the hydration free energies of monovalent ionic species.
    Curutchet C; Bidon-Chanal A; Soteras I; Orozco M; Luque FJ
    J Phys Chem B; 2005 Mar; 109(8):3565-74. PubMed ID: 16851394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absolute hydration entropies of alkali metal ions from molecular dynamics simulations.
    Carlsson J; Aqvist J
    J Phys Chem B; 2009 Jul; 113(30):10255-60. PubMed ID: 19580304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent.
    Li P; Roberts BP; Chakravorty DK; Merz KM
    J Chem Theory Comput; 2013 Jun; 9(6):2733-2748. PubMed ID: 23914143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models.
    Shirts MR; Pande VS
    J Chem Phys; 2005 Apr; 122(13):134508. PubMed ID: 15847482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.