These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22897295)

  • 1. Probing the mobility of supercooled liquid 3-methylpentane at temperatures near the glass transition using rare gas permeation.
    Matthiesen J; Scott Smith R; Kay BD
    J Chem Phys; 2012 Aug; 137(6):064509. PubMed ID: 22897295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.
    May RA; Smith RS; Kay BD
    J Phys Chem A; 2013 Nov; 117(46):11881-9. PubMed ID: 23758621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. II. Diffusion of Ar, Kr, Xe, and CH4 through methanol.
    Matthiesen J; Smith RS; Kay BD
    J Chem Phys; 2010 Nov; 133(17):174505. PubMed ID: 21054049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using rare gas permeation to probe methanol diffusion near the glass transition temperature.
    Matthiesen J; Smith RS; Kay BD
    Phys Rev Lett; 2009 Dec; 103(24):245902. PubMed ID: 20366212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.
    Smith RS; Matthiesen J; Kay BD
    J Chem Phys; 2010 Mar; 132(12):124502. PubMed ID: 20370128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. I. Kinetic model and scaling methods.
    Smith RS; Matthiesen J; Kay BD
    J Chem Phys; 2010 Nov; 133(17):174504. PubMed ID: 21054048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids.
    Harris KR
    J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic processes in a silicate liquid from above melting to below the glass transition.
    Nascimento ML; Fokin VM; Zanotto ED; Abyzov AS
    J Chem Phys; 2011 Nov; 135(19):194703. PubMed ID: 22112093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanometer-resolved interfacial fluidity.
    Bell RC; Wang H; Iedema MJ; Cowin JP
    J Am Chem Soc; 2003 Apr; 125(17):5176-85. PubMed ID: 12708869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Toluene and Ethylbenzene Stable Glass Formation Using Inert Gas Permeation.
    Smith RS; May RA; Kay BD
    J Phys Chem Lett; 2015 Sep; 6(18):3639-44. PubMed ID: 26722735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signatures of fragile-to-strong transition in a binary metallic glass-forming liquid.
    Lad KN; Jakse N; Pasturel A
    J Chem Phys; 2012 Mar; 136(10):104509. PubMed ID: 22423850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition.
    Ito N; Richert R
    J Phys Chem B; 2007 May; 111(18):5016-22. PubMed ID: 17474705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stokes-Einstein relation in supercooled aqueous solutions of glycerol.
    Chen B; Sigmund EE; Halperin WP
    Phys Rev Lett; 2006 Apr; 96(14):145502. PubMed ID: 16712090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale.
    Kokshenev VB; Borges PD; Sullivan NS
    J Chem Phys; 2005 Mar; 122(11):114510. PubMed ID: 15836232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communications: The fractional Stokes-Einstein equation: application to water.
    Harris KR
    J Chem Phys; 2010 Jun; 132(23):231103. PubMed ID: 20572682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid to soft-glass transition in a quasi-2D system: thermodynamic and rheological evidences for a Langmuir monolayer.
    Maestro A; Guzmán E; Chuliá R; Ortega F; Rubio RG; Miller R
    Phys Chem Chem Phys; 2011 May; 13(20):9534-9. PubMed ID: 21483985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On enhanced translational diffusion or the fractional Stokes-Einstein relation observed in a supercooled ionic liquid.
    Ngai KL
    J Phys Chem B; 2006 Dec; 110(51):26211-4. PubMed ID: 17181278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids.
    Sengupta S; Karmakar S
    J Chem Phys; 2014 Jun; 140(22):224505. PubMed ID: 24929405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.