These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22897300)
1. On the determination of absolute vibrational excitation probabilities in molecule-surface scattering: case study of NO on Au(111). Cooper R; Li Z; Golibrzuch K; Bartels C; Rahinov I; Auerbach DJ; Wodtke AM J Chem Phys; 2012 Aug; 137(6):064705. PubMed ID: 22897300 [TBL] [Abstract][Full Text] [Related]
2. Experimental and theoretical study of multi-quantum vibrational excitation: NO(v = 0→1,2,3) in collisions with Au(111). Golibrzuch K; Kandratsenka A; Rahinov I; Cooper R; Auerbach DJ; Wodtke AM; Bartels C J Phys Chem A; 2013 Aug; 117(32):7091-101. PubMed ID: 23947910 [TBL] [Abstract][Full Text] [Related]
3. Observation of direct vibrational excitation in gas-surface collisions of CO with Au(111): a new model system for surface dynamics. Schäfer T; Bartels N; Golibrzuch K; Bartels C; Köckert H; Auerbach DJ; Kitsopoulos TN; Wodtke AM Phys Chem Chem Phys; 2013 Feb; 15(6):1863-7. PubMed ID: 23247407 [TBL] [Abstract][Full Text] [Related]
4. Electron kinetic energies from vibrationally promoted surface exoemission: evidence for a vibrational autodetachment mechanism. LaRue JL; Schäfer T; Matsiev D; Velarde L; Nahler NH; Auerbach DJ; Wodtke AM J Phys Chem A; 2011 Dec; 115(50):14306-14. PubMed ID: 22112161 [TBL] [Abstract][Full Text] [Related]
5. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface. Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561 [TBL] [Abstract][Full Text] [Related]
6. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): incidence energy and surface temperature dependence. Shirhatti PR; Werdecker J; Golibrzuch K; Wodtke AM; Bartels C J Chem Phys; 2014 Sep; 141(12):124704. PubMed ID: 25273458 [TBL] [Abstract][Full Text] [Related]
7. On the temperature dependence of electronically non-adiabatic vibrational energy transfer in molecule-surface collisions. Matsiev D; Li Z; Cooper R; Rahinov I; Bartels C; Auerbach DJ; Wodtke AM Phys Chem Chem Phys; 2011 May; 13(18):8153-62. PubMed ID: 21046047 [TBL] [Abstract][Full Text] [Related]
8. Multiquantum vibrational excitation of NO scattered from Au(111): quantitative comparison of benchmark data to ab initio theories of nonadiabatic molecule-surface interactions. Cooper R; Bartels C; Kandratsenka A; Rahinov I; Shenvi N; Golibrzuch K; Li Z; Auerbach DJ; Tully JC; Wodtke AM Angew Chem Int Ed Engl; 2012 May; 51(20):4954-8. PubMed ID: 22488975 [TBL] [Abstract][Full Text] [Related]
9. Role of vibrationally excited NO in promoting electron emission when colliding with a metal surface: a nonadiabatic dynamic model. Katz G; Zeiri Y; Kosloff R J Phys Chem B; 2005 Oct; 109(40):18876-80. PubMed ID: 16853429 [TBL] [Abstract][Full Text] [Related]
10. State-selected dynamics of the complex-forming bimolecular reaction Cl- +CH3 Cl'-->ClCH3+Cl'-: a four-dimensional quantum scattering study. Hennig C; Schmatz S J Chem Phys; 2004 Jul; 121(1):220-36. PubMed ID: 15260540 [TBL] [Abstract][Full Text] [Related]
11. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111). Kroes GJ; Pavanello M; Blanco-Rey M; Alducin M; Auerbach DJ J Chem Phys; 2014 Aug; 141(5):054705. PubMed ID: 25106598 [TBL] [Abstract][Full Text] [Related]
12. The effects of electron-hole pair coupling on the infrared laser-controlled vibrational excitation of NO on Au(111). Tremblay JC; Monturet S; Saalfrank P J Phys Chem A; 2011 Oct; 115(39):10698-707. PubMed ID: 21861512 [TBL] [Abstract][Full Text] [Related]
13. State-to-state reaction probabilities for the H+O2(v,j)-->O+OH(v',j') reaction on three potential energy surfaces. Hankel M; Smith SC; Meijer AJ J Chem Phys; 2007 Aug; 127(6):064316. PubMed ID: 17705605 [TBL] [Abstract][Full Text] [Related]
14. Dissociative chemisorption of H2 on the Cu(110) surface: a quantum and quasiclassical dynamical study. Kroes GJ; Pijper E; Salin A J Chem Phys; 2007 Oct; 127(16):164722. PubMed ID: 17979386 [TBL] [Abstract][Full Text] [Related]
15. Rotational alignment of NO (A2Σ+) from collisions with Ne. Steill JD; Kay JJ; Paterson G; Sharples TR; Kłos J; Costen ML; Strecker KE; McKendrick KG; Alexander MH; Chandler DW J Phys Chem A; 2013 Aug; 117(34):8163-74. PubMed ID: 23611173 [TBL] [Abstract][Full Text] [Related]
16. Modeling reactive scattering of F(2P) at a liquid squalane interface: a hybrid QM/MM molecular dynamics study. Radak BK; Yockel S; Kim D; Schatz GC J Phys Chem A; 2009 Jul; 113(26):7218-26. PubMed ID: 19323516 [TBL] [Abstract][Full Text] [Related]
17. Quantifying the breakdown of the Born-Oppenheimer approximation in surface chemistry. Rahinov I; Cooper R; Matsiev D; Bartels C; Auerbach DJ; Wodtke AM Phys Chem Chem Phys; 2011 Jul; 13(28):12680-92. PubMed ID: 21677973 [TBL] [Abstract][Full Text] [Related]
18. Quantum dynamics of the H+O(2)-->O+OH reaction. Quéméner G; Kendrick BK; Balakrishnan N J Chem Phys; 2010 Jan; 132(1):014302. PubMed ID: 20078156 [TBL] [Abstract][Full Text] [Related]
19. Vibrational properties of disordered mono- and bilayers of physisorbed sulfur hexafluoride on Au(111). Rosenbaum AW; Freedman MA; Sibener SJ J Phys Chem A; 2006 Apr; 110(16):5537-41. PubMed ID: 16623487 [TBL] [Abstract][Full Text] [Related]
20. Vibrational spectra and DFT study of anticancer active molecule 2-(4-Bromophenyl)-1H-benzimidazole by normal coordinate analysis. Xavier TS; Rashid N; Joe IH Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):319-26. PubMed ID: 21030299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]