These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22897384)

  • 21. Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential.
    Burghardt M; Riederer M
    J Exp Bot; 2003 Aug; 54(389):1941-9. PubMed ID: 12815029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divergent phenological and leaf gas exchange strategies of two competing tree species drive contrasting responses to drought at their altitudinal boundary.
    Fernández-de-Uña L; Aranda I; Rossi S; Fonti P; Cañellas I; Gea-Izquierdo G
    Tree Physiol; 2018 Aug; 38(8):1152-1165. PubMed ID: 29718459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of dry season on Quercus suber L. leaf traits in the Iberian Peninsula.
    Prats KA; Brodersen CR; Ashton MS
    Am J Bot; 2019 May; 106(5):656-666. PubMed ID: 31034587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history.
    Jiménez P; de Heredia UL; Collada C; Lorenzo Z; Gil L
    Heredity (Edinb); 2004 Nov; 93(5):510-5. PubMed ID: 15329661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactive effects of shade and irrigation on the performance of seedlings of three Mediterranean Quercus species.
    Castro-Díez P; Navarro J; Pintado A; Sancho LG; Maestro M
    Tree Physiol; 2006 Mar; 26(3):389-400. PubMed ID: 16356909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydraulic conductivity of red oak (Quercus rubra L.) leaf tissue does not respond to light.
    Rockwell FE; Holbrook NM; Zwieniecki MA
    Plant Cell Environ; 2011 Apr; 34(4):565-79. PubMed ID: 21309791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observation of the scale of patchy stomatal behavior in leaves of Quercus crispula using an Imaging-PAM chlorophyll fluorometer.
    Kamakura M; Kosugi Y; Takanashi S; Tobita H; Uemura A; Utsugi H
    Tree Physiol; 2012 Jul; 32(7):839-46. PubMed ID: 22696269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in stomatal conductance along grass blades reflect changes in leaf structure.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2012 Jun; 35(6):1040-9. PubMed ID: 22146058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees.
    Kamakura M; Kosugi Y; Takanashi S; Matsumoto K; Okumura M; Philip E
    Tree Physiol; 2011 Feb; 31(2):160-8. PubMed ID: 21383025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus.
    Franks PJ; Drake PL; Beerling DJ
    Plant Cell Environ; 2009 Dec; 32(12):1737-1748. PubMed ID: 19682293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stomatal crypts have small effects on transpiration: a numerical model analysis.
    Roth-Nebelsick A; Hassiotou F; Veneklaas EJ
    Plant Physiol; 2009 Dec; 151(4):2018-27. PubMed ID: 19864375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A possible evaporation site in the guard cell wall and the influence of leaf structure on the humidity response by stomata of woody plants.
    Appleby RF; Davies WJ
    Oecologia; 1983 Jan; 56(1):30-40. PubMed ID: 28310766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves.
    Martins SC; McAdam SA; Deans RM; DaMatta FM; Brodribb TJ
    Plant Cell Environ; 2016 Mar; 39(3):694-705. PubMed ID: 26510650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-resolution imaging and in situ cutting of leaf epicuticular waxes of the biomass plant Miscanthus sinensis.
    Kim KW
    Microscopy (Oxf); 2013; 62(5):541-5. PubMed ID: 23468241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration.
    Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR
    Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves.
    Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L
    J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model.
    Zweifel R; Steppe K; Sterck FJ
    J Exp Bot; 2007; 58(8):2113-31. PubMed ID: 17490998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity?
    Limousin JM; Misson L; Lavoir AV; Martin NK; Rambal S
    Plant Cell Environ; 2010 May; 33(5):863-75. PubMed ID: 20051039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling of stomatal density response to atmospheric CO2.
    Konrad W; Roth-Nebelsick A; Grein M
    J Theor Biol; 2008 Aug; 253(4):638-58. PubMed ID: 18538792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assimilate transport in phloem sets conditions for leaf gas exchange.
    Nikinmaa E; Hölttä T; Hari P; Kolari P; Mäkelä A; Sevanto S; Vesala T
    Plant Cell Environ; 2013 Mar; 36(3):655-69. PubMed ID: 22934921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.