BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22897400)

  • 1. SAR measurement due to mobile phone exposure in a simulated biological media.
    Behari J; Nirala JP
    Electromagn Biol Med; 2012 Sep; 31(3):195-203. PubMed ID: 22897400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific absorption rate variation in a brain phantom due to exposure by a 3G mobile phone: problems in dosimetry.
    Behari J; Nirala JP
    Indian J Exp Biol; 2013 Dec; 51(12):1079-85. PubMed ID: 24579373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of three-dimensional SAR distributions emitted by mobile phones in an epidemiological perspective.
    Deltour I; Wiart J; Taki M; Wake K; Varsier N; Mann S; Schüz J; Cardis E
    Bioelectromagnetics; 2011 Dec; 32(8):634-43. PubMed ID: 21695709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of mobile phones with superficial passive metallic implants.
    Virtanen H; Huttunen J; Toropainen A; Lappalainen R
    Phys Med Biol; 2005 Jun; 50(11):2689-700. PubMed ID: 15901963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric analysis of the carousel setup for the exposure of rats at 1.62 GHz.
    Schönborn F; Poković K; Kuster N
    Bioelectromagnetics; 2004 Jan; 25(1):16-26. PubMed ID: 14696049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies.
    Wake K; Varsier N; Watanabe S; Taki M; Wiart J; Mann S; Deltour I; Cardis E
    Phys Med Biol; 2009 Oct; 54(19):5695-706. PubMed ID: 19724098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of reverberation-chamber type whole-body exposure system for mobile-phone frequency.
    Jung KB; Kim TH; Kim JL; Doh HJ; Chung YC; Choi JH; Pack JK
    Electromagn Biol Med; 2008; 27(1):73-82. PubMed ID: 18327716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosimetric assessment of an exposure system for simulating GSM and WCDMA mobile phone usage.
    Bahr A; Dorn H; Bolz T
    Bioelectromagnetics; 2006 May; 27(4):320-7. PubMed ID: 16557502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of mobile phone design features affecting radiofrequency power absorbed in a human head phantom.
    Kuehn S; Kelsh MA; Kuster N; Sheppard AR; Shum M
    Bioelectromagnetics; 2013 Sep; 34(6):479-88. PubMed ID: 23533135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head.
    de Salles AA; Bulla G; Rodriguez CE
    Electromagn Biol Med; 2006; 25(4):349-60. PubMed ID: 17178592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific absorption rate and electric field measurements in the near field of six mobile phone base station antennas.
    Toivonen T; Toivo T; Puranen L; Jokela K
    Bioelectromagnetics; 2009 May; 30(4):307-12. PubMed ID: 19194889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the influence of handset phone position on RF exposure of brain tissue.
    Ghanmi A; Varsier N; Hadjem A; Conil E; Picon O; Wiart J
    Bioelectromagnetics; 2014 Dec; 35(8):568-79. PubMed ID: 25263784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAR distribution in human beings when using body-worn RF transmitters.
    Christ A; Samaras T; Neufeld E; Klingenböck A; Kuster N
    Radiat Prot Dosimetry; 2007; 124(1):6-14. PubMed ID: 17652110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure setups for laboratory animals and volunteer studies using body-mounted antennas.
    Bahr A; Adami C; Bolz T; Rennings A; Dorn H; Rüttiger L
    Radiat Prot Dosimetry; 2007; 124(1):31-4. PubMed ID: 17595209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz.
    Schmid G; Uberbacher R; Samaras T; Tschabitscher M; Mazal PR
    Phys Med Biol; 2007 Sep; 52(17):5457-68. PubMed ID: 17762098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining near- and far-field exposure for an organ-specific and whole-body RF-EMF proxy for epidemiological research: a reference case.
    Lauer O; Frei P; Gosselin MC; Joseph W; Röösli M; Fröhlich J
    Bioelectromagnetics; 2013 Jul; 34(5):366-74. PubMed ID: 23417714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of safety distance limits for a human near a cellular base station antenna, adopting the IEEE standard or ICNIRP guidelines.
    Cooper J; Marx B; Buhl J; Hombach V
    Bioelectromagnetics; 2002 Sep; 23(6):429-43. PubMed ID: 12210561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG electrode caps can reduce SAR induced in the head by GSM900 mobile phones.
    Hamblin DL; Anderson V; McIntosh RL; McKenzie RJ; Wood AW; Iskra S; Croft RJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):914-20. PubMed ID: 17518289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a rat head exposure system for simulating human exposure to RF fields from handheld wireless telephones.
    Chou CK; Chan KW; McDougall JA; Guy AW
    Bioelectromagnetics; 1999; Suppl 4():75-92. PubMed ID: 10334717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.