These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 22898176)
1. Evaluation of transgenic tobacco plants expressing a bacterial Co-Ni transporter for acquisition of cobalt. Nair S; Joshi-Saha A; Singh S; Ramachandran V; Singh S; Thorat V; Kaushik CP; Eapen S; D'Souza SF J Biotechnol; 2012 Nov; 161(4):422-8. PubMed ID: 22898176 [TBL] [Abstract][Full Text] [Related]
2. Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants. Nesler A; DalCorso G; Fasani E; Manara A; Di Sansebastiano GP; Argese E; Furini A N Biotechnol; 2017 Mar; 35():54-61. PubMed ID: 27902938 [TBL] [Abstract][Full Text] [Related]
3. Expression of a Neurospora crassa zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Dixit P; Singh S; Vancheeswaran R; Patnala K; Eapen S Plant Cell Environ; 2010 Oct; 33(10):1697-707. PubMed ID: 20492552 [TBL] [Abstract][Full Text] [Related]
4. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution. Nagata T; Morita H; Akizawa T; Pan-Hou H Appl Microbiol Biotechnol; 2010 Jun; 87(2):781-6. PubMed ID: 20393701 [TBL] [Abstract][Full Text] [Related]
5. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Weyens N; Croes S; Dupae J; Newman L; van der Lelie D; Carleer R; Vangronsveld J Environ Pollut; 2010 Jul; 158(7):2422-7. PubMed ID: 20462680 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. Wycisk K; Kim EJ; Schroeder JI; Krämer U FEBS Lett; 2004 Dec; 578(1-2):128-34. PubMed ID: 15581629 [TBL] [Abstract][Full Text] [Related]
7. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation. Keeling SM; Stewart RB; Anderson CW; Robinson BH Int J Phytoremediation; 2003; 5(3):235-44. PubMed ID: 14750431 [TBL] [Abstract][Full Text] [Related]
8. Large-area experiment on uptake of metals by twelve plants growing in soils contaminated with multiple metals. Lai HY; Juang KW; Chen ZS Int J Phytoremediation; 2010; 12(8):785-97. PubMed ID: 21166348 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of heavy metal accumulation by tissue specific co-expression of iaaM and ACC deaminase genes in plants. Zhang Y; Zhao L; Wang Y; Yang B; Chen S Chemosphere; 2008 Jun; 72(4):564-71. PubMed ID: 18471863 [TBL] [Abstract][Full Text] [Related]
10. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. He YK; Sun JG; Feng XZ; Czakó M; Márton L Cell Res; 2001 Sep; 11(3):231-6. PubMed ID: 11642409 [TBL] [Abstract][Full Text] [Related]
11. Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Thomas JC; Davies EC; Malick FK; Endreszl C; Williams CR; Abbas M; Petrella S; Swisher K; Perron M; Edwards R; Osenkowski P; Urbanczyk N; Wiesend WN; Murray KS Biotechnol Prog; 2003; 19(2):273-80. PubMed ID: 12675559 [TBL] [Abstract][Full Text] [Related]
12. Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants. Kim YJ; Kim JH; Lee CE; Mok YG; Choi JS; Shin HS; Hwang S FEBS Lett; 2006 Jan; 580(1):206-10. PubMed ID: 16364322 [TBL] [Abstract][Full Text] [Related]
13. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Bi R; Schlaak M; Siefert E; Lord R; Connolly H Chemosphere; 2011 Apr; 83(3):318-26. PubMed ID: 21237480 [TBL] [Abstract][Full Text] [Related]
14. Transgenic Nicotiana tabacum plants expressing a fungal copper transporter gene show enhanced acquisition of copper. Singh S; Korripally P; Vancheeswaran R; Eapen S Plant Cell Rep; 2011 Oct; 30(10):1929-38. PubMed ID: 21671073 [TBL] [Abstract][Full Text] [Related]
15. Can Clethra barbinervis Distinguish Nickel and Cobalt in Uptake and Translocation? Yamaguchi T; Tomioka R; Takenaka C Int J Mol Sci; 2015 Sep; 16(9):21378-91. PubMed ID: 26370968 [TBL] [Abstract][Full Text] [Related]
16. Cobalt and nickel content in Hydrocharis morsus-ranae and their bioremoval from single- and binary solutions. Polechońska L; Samecka-Cymerman A Environ Sci Pollut Res Int; 2018 Nov; 25(32):32044-32052. PubMed ID: 30218329 [TBL] [Abstract][Full Text] [Related]
17. Secondary transporters for nickel and cobalt ions: theme and variations. Eitinger T; Suhr J; Moore L; Smith JA Biometals; 2005 Aug; 18(4):399-405. PubMed ID: 16158232 [TBL] [Abstract][Full Text] [Related]
18. Comparative study on Ni(2+)-affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni(2+) bioaccumulation. Deng X; He J; He N Bioresour Technol; 2013 Feb; 130():69-74. PubMed ID: 23306112 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
20. Transgenic tobacco plants expressing a fungal laccase are able to reduce phenol content from olive mill wastewaters. Chiaiese P; Palomba F; Galante C; Esposito S; De Biasi MG; Filippone E Int J Phytoremediation; 2012 Oct; 14(9):835-44. PubMed ID: 22908648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]