These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22898271)

  • 21. Effects of Aβ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network.
    Ford L; Crossley M; Williams T; Thorpe JR; Serpell LC; Kemenes G
    Sci Rep; 2015 May; 5():10614. PubMed ID: 26024049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How stress alters memory in 'smart' snails.
    Dalesman S; Lukowiak K
    PLoS One; 2012; 7(2):e32334. PubMed ID: 22384220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide is necessary for long-term facilitation of synaptic responses and for development of context memory in terrestrial snails.
    Korshunova TA; Balaban PM
    Neuroscience; 2014 Apr; 266():127-35. PubMed ID: 24560987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Network, cellular and molecular mechanisms of plasticity in simple nervous systems].
    Balaban PM; Korshunova TA
    Usp Fiziol Nauk; 2011; 42(4):3-19. PubMed ID: 22145308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A systems approach to the cellular analysis of associative learning in the pond snail Lymnaea.
    Benjamin PR; Staras K; Kemenes G
    Learn Mem; 2000; 7(3):124-31. PubMed ID: 10837501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A persistent cellular change in a single modulatory neuron contributes to associative long-term memory.
    Jones NG; Kemenes I; Kemenes G; Benjamin PR
    Curr Biol; 2003 Jun; 13(12):1064-9. PubMed ID: 12814554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic plasticity of the interpositorubral pathway functionally related to forelimb flexion movements.
    Pananceau M; Rispal-Padel L; Meftah EM
    J Neurophysiol; 1996 Jun; 75(6):2542-61. PubMed ID: 8793763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-trial conditioned taste aversion in Lymnaea: good and poor performers in long-term memory acquisition.
    Sugai R; Azami S; Shiga H; Watanabe T; Sadamoto H; Kobayashi S; Hatakeyama D; Fujito Y; Lukowiak K; Ito E
    J Exp Biol; 2007 Apr; 210(Pt 7):1225-37. PubMed ID: 17371921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Balanced plasticity and stability of the electrical properties of a molluscan modulatory interneuron after classical conditioning: a computational study.
    Vavoulis DV; Nikitin ES; Kemenes I; Marra V; Feng J; Benjamin PR; Kemenes G
    Front Behav Neurosci; 2010; 4():19. PubMed ID: 20485464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The behavioral plasticity of the edible snail and its neuronal mechanisms].
    Balaban PM; Maksimova OA; Bravarenko NI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1992; 42(6):1208-20. PubMed ID: 1338252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis.
    Kemenes G; Staras K; Benjamin PR
    J Neurophysiol; 1997 Nov; 78(5):2351-62. PubMed ID: 9356387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MEN1 Tumor Suppressor Gene is Required for Long-term Memory Formation in an Aversive Operant Conditioning Model of Lymnaea stagnalis.
    Dong N; Senzel A; Li K; Lu TZ; Guo CH; Aleksic M; Feng ZP
    Neuroscience; 2018 May; 379():22-31. PubMed ID: 29496634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae.
    Honjo K; Furukubo-Tokunaga K
    J Neurosci; 2009 Jan; 29(3):852-62. PubMed ID: 19158309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of 5-HT and insulin on learning and memory formation in food-deprived snails.
    Aonuma H; Totani Y; Kaneda M; Nakamura R; Watanabe T; Hatakeyama D; Dyakonova VE; Lukowiak K; Ito E
    Neurobiol Learn Mem; 2018 Feb; 148():20-29. PubMed ID: 29294381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensory input from the osphradium modulates the response to memory-enhancing stressors in Lymnaea stagnalis.
    Karnik V; Braun M; Dalesman S; Lukowiak K
    J Exp Biol; 2012 Feb; 215(Pt 3):536-42. PubMed ID: 22246262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior.
    Sieling F; Bédécarrats A; Simmers J; Prinz AA; Nargeot R
    Curr Biol; 2014 May; 24(9):941-50. PubMed ID: 24704077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of key neurons for learning stimulates learning ability in Lymnaea stagnalis.
    Yamanaka M; Hatakeyama D; Sadamoto H; Kimura T; Ito E
    Neurosci Lett; 2000 Jan; 278(1-2):113-6. PubMed ID: 10643814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epicatechin Alters the Activity of a Neuron Necessary for Long-Term Memory of Aerial Respiratory Behavior in
    Komatsuzaki Y; Lukowiak K
    Zoolog Sci; 2022 Aug; 39(4):. PubMed ID: 35960033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nature versus nurture in heat stress induced learning between inbred and outbred populations of Lymnaea stagnalis.
    Rivi V; Batabyal A; Benatti C; Blom JM; Lukowiak K
    J Therm Biol; 2022 Jan; 103():103170. PubMed ID: 35027189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increase in excitability of RPeD11 results in memory enhancement of juvenile and adult Lymnaea stagnalis by predator-induced stress.
    Sunada H; Horikoshi T; Lukowiak K; Sakakibara M
    Neurobiol Learn Mem; 2010 Sep; 94(2):269-77. PubMed ID: 20601028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.