BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2289834)

  • 1. The fluid mechanics of a sac-type ventricular assist device.
    Clark C; Jin W; Glaser A
    Int J Artif Organs; 1990 Dec; 13(12):814-22. PubMed ID: 2289834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD).
    Jin W; Clark C
    J Biomech; 1993 Jun; 26(6):697-707. PubMed ID: 8514814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mean flow velocity patterns within a ventricular assist device.
    Baldwin JT; Tarbell JM; Deutsch S; Geselowitz DB
    ASAIO Trans; 1989; 35(3):429-33. PubMed ID: 2597496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the driving condition of a pneumatic ventricular assist device on the cavitation intensity of the inlet and outlet mechanical heart valves.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):328-34. PubMed ID: 19506466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow simulation of a diaphragm-type ventricular assist device with structural interactions.
    Moosavi MH; Fatouraee N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1027-30. PubMed ID: 18002135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle.
    Baldwin JT; Deutsch S; Geselowitz DB; Tarbell JM
    J Biomech Eng; 1994 May; 116(2):190-200. PubMed ID: 8078326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of unsteady flow in a model of a ventricular assist device by numerical modelling and comparison with experiment.
    König CS; Clark C; Mokhtarzadeh-Dehghan MR
    Med Eng Phys; 1999 Jan; 21(1):53-64. PubMed ID: 10220137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection.
    Cooper BT; Roszelle BN; Long TC; Deutsch S; Manning KB
    J Biomech Eng; 2008 Aug; 130(4):041019. PubMed ID: 18601461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive flow measurement of a rotary pump ventricular assist device using quantitative contrast echocardiography.
    Schwarz KQ; Parikh SS; Chen X; Farrar DJ; Steinmetz S; Ramamurthi S; Hallinan W; Massey HT; Chen L
    J Am Soc Echocardiogr; 2010 Mar; 23(3):324-9. PubMed ID: 20206830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid dynamic optimization of a ventricular assist device using particle image velocimetry.
    Mussivand T; Day KD; Naber BC
    ASAIO J; 1999; 45(1):25-31. PubMed ID: 9952002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow behavior within the 12-cc Penn State pulsatile pediatric ventricular assist device: an experimental study of the initial design.
    Manning KB; Wivholm BD; Yang N; Fontaine AA; Deutsch S
    Artif Organs; 2008 Jun; 32(6):442-52. PubMed ID: 18422800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of magnetic resonance imaging and Laser Doppler Anemometry velocity measurements downstream of replacement heart valves: implications for in vivo assessment of prosthetic valve function.
    Fontaine AA; Heinrich RS; Walker PG; Pedersen EM; Scheidegger MB; Boesiger P; Walton SP; Yoganathan AP
    J Heart Valve Dis; 1996 Jan; 5(1):66-73. PubMed ID: 8834728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of four blood pump geometries: fluorescent particle flow visualisation technique.
    Rose ML; Mackay TG; Wheatley DJ
    Med Eng Phys; 2000 Apr; 22(3):201-14. PubMed ID: 10964040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow mixing and fluid residence times in a model of a ventricular assist device.
    König CS; Clark C
    Med Eng Phys; 2001 Mar; 23(2):99-110. PubMed ID: 11413062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for determination of stagnation in pneumatic ventricular assist devices.
    Obidowski D; Reorowicz P; Witkowski D; Sobczak K; Jóźwik K
    Int J Artif Organs; 2018 Oct; 41(10):653-663. PubMed ID: 30073903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of the motions of the pumping diaphragm within a sac-type pneumatically driven ventricular assist device.
    Jin W; Clark C
    J Biomech; 1994 Jan; 27(1):43-55. PubMed ID: 8106535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parametric study of valve orientation on the flow patterns of the Penn State pulsatile pediatric ventricular assist device.
    Roszelle BN; Deutsch S; Manning KB
    ASAIO J; 2010; 56(4):356-63. PubMed ID: 20559131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device.
    Mann KA; Deutsch S; Tarbell JM; Geselowitz DB; Rosenberg G; Pierce WS
    J Biomech Eng; 1987 May; 109(2):139-47. PubMed ID: 3599939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Reynolds stresses within the Penn State left ventricular assist device.
    Baldwin JT; Deutsch S; Geselowitz DB; Tarbell JM
    ASAIO Trans; 1990; 36(3):M274-8. PubMed ID: 2252676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.