BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 22898602)

  • 1. Targeting oncogenic Ras signaling in hematologic malignancies.
    Ward AF; Braun BS; Shannon KM
    Blood; 2012 Oct; 120(17):3397-406. PubMed ID: 22898602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic and Preclinical Insights from Mouse Models of Hematologic Cancer Characterized by Hyperactive Ras.
    Wandler A; Shannon K
    Cold Spring Harb Perspect Med; 2018 Apr; 8(4):. PubMed ID: 28778967
    [No Abstract]   [Full Text] [Related]  

  • 3. Targeting the RAS-dependent chemoresistance: The Warburg connection.
    Serna-Blasco R; Sanz-Álvarez M; Aguilera Ó; García-Foncillas J
    Semin Cancer Biol; 2019 Feb; 54():80-90. PubMed ID: 29432815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges in Ras therapeutics in pancreatic cancer.
    Choi M; Bien H; Mofunanya A; Powers S
    Semin Cancer Biol; 2019 Feb; 54():101-108. PubMed ID: 29170065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drugging the Undruggable: Advances on RAS Targeting in Cancer.
    Molina-Arcas M; Samani A; Downward J
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34200676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ras processing as a therapeutic target in hematologic malignancies.
    Le DT; Shannon KM
    Curr Opin Hematol; 2002 Jul; 9(4):308-15. PubMed ID: 12042705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.
    Loboda A; Nebozhyn M; Klinghoffer R; Frazier J; Chastain M; Arthur W; Roberts B; Zhang T; Chenard M; Haines B; Andersen J; Nagashima K; Paweletz C; Lynch B; Feldman I; Dai H; Huang P; Watters J
    BMC Med Genomics; 2010 Jun; 3():26. PubMed ID: 20591134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAS-mediated oncogenic signaling pathways in human malignancies.
    Khan AQ; Kuttikrishnan S; Siveen KS; Prabhu KS; Shanmugakonar M; Al-Naemi HA; Haris M; Dermime S; Uddin S
    Semin Cancer Biol; 2019 Feb; 54():1-13. PubMed ID: 29524560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in tyrosine kinase and tyrosine phosphatase and their relevance to the target therapy in hematologic malignancies.
    Zhu N; Xiao H; Wang LM; Fu S; Zhao C; Huang H
    Future Oncol; 2015; 11(4):659-73. PubMed ID: 25686120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring Ras-pathway--inhibitor combinations for cancer therapy.
    Blum R; Kloog Y
    Drug Resist Updat; 2005 Dec; 8(6):369-80. PubMed ID: 16356760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches to Ras signaling modulation and treatment of Ras-dependent disorders: a patent review (2007--present).
    Sacco E; Spinelli M; Vanoni M
    Expert Opin Ther Pat; 2012 Nov; 22(11):1263-87. PubMed ID: 23009088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Prospects for Targeting RAS.
    Singh H; Longo DL; Chabner BA
    J Clin Oncol; 2015 Nov; 33(31):3650-9. PubMed ID: 26371146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies?
    Reuter CW; Morgan MA; Bergmann L
    Blood; 2000 Sep; 96(5):1655-69. PubMed ID: 10961860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies.
    De Raedt T; Beert E; Pasmant E; Luscan A; Brems H; Ortonne N; Helin K; Hornick JL; Mautner V; Kehrer-Sawatzki H; Clapp W; Bradner J; Vidaud M; Upadhyaya M; Legius E; Cichowski K
    Nature; 2014 Oct; 514(7521):247-51. PubMed ID: 25119042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1.
    Barkan B; Starinsky S; Friedman E; Stein R; Kloog Y
    Clin Cancer Res; 2006 Sep; 12(18):5533-42. PubMed ID: 17000690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor.
    Cichowski K; Santiago S; Jardim M; Johnson BW; Jacks T
    Genes Dev; 2003 Feb; 17(4):449-54. PubMed ID: 12600938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of wild type RAS isoforms in cancer.
    Zhou B; Der CJ; Cox AD
    Semin Cell Dev Biol; 2016 Oct; 58():60-9. PubMed ID: 27422332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to make an undruggable enzyme druggable: lessons from ras proteins.
    Sayyed-Ahmad A; Gorfe AA
    Adv Protein Chem Struct Biol; 2020; 122():181-202. PubMed ID: 32951811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects for personalized medicine with inhibitors targeting the RAS and PI3K pathways.
    Lackner MR
    Expert Rev Mol Diagn; 2010 Jan; 10(1):75-87. PubMed ID: 20014924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting ROR1 identifies new treatment strategies in hematological cancers.
    Karvonen H; Niininen W; Murumägi A; Ungureanu D
    Biochem Soc Trans; 2017 Apr; 45(2):457-464. PubMed ID: 28408486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.