These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22898742)

  • 1. Electrokinetics with "paper-and-pencil" devices.
    Mandal P; Dey R; Chakraborty S
    Lab Chip; 2012 Oct; 12(20):4026-8. PubMed ID: 22898742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially resolved electrochemical sensing of chemical gradients.
    Mensack MM; Wydallis JB; Lynn NS; Dandy DS; Henry CS
    Lab Chip; 2013 Jan; 13(2):208-11. PubMed ID: 23172274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of electrical fields with fluids: laboratory-on-a-chip applications.
    Wu J
    IET Nanobiotechnol; 2008 Mar; 2(1):14-27. PubMed ID: 18298196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of glucose sensor using two-photon adsorbed photopolymerization.
    Kim JM; Park JJ; Lee HJ; Kim WS; Muramatsu H; Chang SM
    Bioprocess Biosyst Eng; 2010 Jan; 33(1):47-53. PubMed ID: 19727835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source.
    Ge L; Wang P; Ge S; Li N; Yu J; Yan M; Huang J
    Anal Chem; 2013 Apr; 85(8):3961-70. PubMed ID: 23472854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel microfluidic driver via AC electrokinetics.
    Kuo CT; Liu CH
    Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical detection in a paper-based separation device.
    Carvalhal RF; Kfouri MS; Piazetta MH; Gobbi AL; Kubota LT
    Anal Chem; 2010 Feb; 82(3):1162-5. PubMed ID: 20055490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.
    Sasaki N
    Anal Sci; 2012; 28(1):3-8. PubMed ID: 22232216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods.
    Hervás M; López MA; Escarpa A
    Analyst; 2011 May; 136(10):2131-8. PubMed ID: 21394379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in low-cost microfluidic platforms for diagnostic applications.
    Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP
    Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices.
    Fredrick SJ; Gross EM
    Bioanalysis; 2009 Apr; 1(1):31-6. PubMed ID: 21083185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies.
    Lee G; Park I; Kwon K; Kwon T; Seo J; Chang WJ; Nam H; Cha GS; Choi MH; Yoon DS; Lee SW
    Biomed Microdevices; 2012 Apr; 14(2):375-84. PubMed ID: 22143877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An AC voltammetry approach for the detection of droplets in microfluidic devices.
    Gu Y; Fisher AC
    Analyst; 2013 Aug; 138(16):4448-52. PubMed ID: 23799232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical paper-based microfluidic devices.
    Adkins J; Boehle K; Henry C
    Electrophoresis; 2015 Aug; 36(16):1811-24. PubMed ID: 25820492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of the effects of inlet channel geometry on electrokinetic instabilities.
    Pan YJ; Yang RJ
    Biomed Microdevices; 2009 Feb; 11(1):9-16. PubMed ID: 18819007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device.
    Shiroma LY; Santhiago M; Gobbi AL; Kubota LT
    Anal Chim Acta; 2012 May; 725():44-50. PubMed ID: 22502610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves.
    Han Z; Li W; Huang Y; Zheng B
    Anal Chem; 2009 Jul; 81(14):5840-5. PubMed ID: 19518139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug.
    Dhopeshwarkar R; Sun L; Crooks RM
    Lab Chip; 2005 Oct; 5(10):1148-54. PubMed ID: 16175272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of inlaid electrodes for whole column electrochemical detection in HPLC.
    Seo JH; Leow PL; Cho SH; Lim HW; Kim JY; Patel BA; Park JG; O'Hare D
    Lab Chip; 2009 Aug; 9(15):2238-44. PubMed ID: 19606303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.