BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22899066)

  • 1. The RGS proteins add to the diversity of soybean heterotrimeric G-protein signaling.
    Choudhury SR; Westfall CS; Pandey S
    Plant Signal Behav; 2012 Sep; 7(9):1114-7. PubMed ID: 22899066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of GTP-binding and GTPase activity of heterotrimeric Gα proteins.
    Choudhury SR; Westfall CS; Hackenberg D; Pandey S
    Methods Mol Biol; 2013; 1043():13-20. PubMed ID: 23913031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two chimeric regulators of G-protein signaling (RGS) proteins differentially modulate soybean heterotrimeric G-protein cycle.
    Roy Choudhury S; Westfall CS; Laborde JP; Bisht NC; Jez JM; Pandey S
    J Biol Chem; 2012 May; 287(21):17870-17881. PubMed ID: 22474294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.
    Siderovski DP; Willard FS
    Int J Biol Sci; 2005; 1(2):51-66. PubMed ID: 15951850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G protein activation without a GEF in the plant kingdom.
    Urano D; Jones JC; Wang H; Matthews M; Bradford W; Bennetzen JL; Jones AM
    PLoS Genet; 2012 Jun; 8(6):e1002756. PubMed ID: 22761582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive evolution of signaling partners.
    Urano D; Dong T; Bennetzen JL; Jones AM
    Mol Biol Evol; 2015 Apr; 32(4):998-1007. PubMed ID: 25568345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system.
    Anantharaman V; Abhiman S; de Souza RF; Aravind L
    Gene; 2011 Apr; 475(2):63-78. PubMed ID: 21182906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants.
    Hackenberg D; McKain MR; Lee SG; Roy Choudhury S; McCann T; Schreier S; Harkess A; Pires JC; Wong GK; Jez JM; Kellogg EA; Pandey S
    New Phytol; 2017 Oct; 216(2):562-575. PubMed ID: 27634188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence-based assays for RGS box function.
    Willard FS; Kimple RJ; Kimple AJ; Johnston CA; Siderovski DP
    Methods Enzymol; 2004; 389():56-71. PubMed ID: 15313559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural determinants of G-protein alpha subunit selectivity by regulator of G-protein signaling 2 (RGS2).
    Kimple AJ; Soundararajan M; Hutsell SQ; Roos AK; Urban DJ; Setola V; Temple BR; Roth BL; Knapp S; Willard FS; Siderovski DP
    J Biol Chem; 2009 Jul; 284(29):19402-11. PubMed ID: 19478087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-activating G protein α subunits engage seven-transmembrane regulator of G protein signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri.
    Bosch DE; Jeck WR; Siderovski DP
    J Biol Chem; 2022 Aug; 298(8):102167. PubMed ID: 35738399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase C phosphorylates RGS2 and modulates its capacity for negative regulation of Galpha 11 signaling.
    Cunningham ML; Waldo GL; Hollinger S; Hepler JR; Harden TK
    J Biol Chem; 2001 Feb; 276(8):5438-44. PubMed ID: 11063746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.
    Kimple AJ; Bosch DE; Giguère PM; Siderovski DP
    Pharmacol Rev; 2011 Sep; 63(3):728-49. PubMed ID: 21737532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks.
    Bisht NC; Jez JM; Pandey S
    New Phytol; 2011 Apr; 190(1):35-48. PubMed ID: 21175635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding.
    Zhong H; Wade SM; Woolf PJ; Linderman JJ; Traynor JR; Neubig RR
    J Biol Chem; 2003 Feb; 278(9):7278-84. PubMed ID: 12446706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2.
    Versele M; de Winde JH; Thevelein JM
    EMBO J; 1999 Oct; 18(20):5577-91. PubMed ID: 10523302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo.
    Anger T; Zhang W; Mende U
    J Biol Chem; 2004 Feb; 279(6):3906-15. PubMed ID: 14630933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sst2 is a GTPase-activating protein for Gpa1: purification and characterization of a cognate RGS-Galpha protein pair in yeast.
    Apanovitch DM; Slep KC; Sigler PB; Dohlman HG
    Biochemistry; 1998 Apr; 37(14):4815-22. PubMed ID: 9537998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction: G Protein-coupled Receptors and RGS Proteins.
    Stewart A; Fisher RA
    Prog Mol Biol Transl Sci; 2015; 133():1-11. PubMed ID: 26123299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duplicated RGS (Regulator of G-protein signaling) proteins exhibit conserved biochemical but differential transcriptional regulation of heterotrimeric G-protein signaling in Brassica species.
    Kumar R; Bisht NC
    Sci Rep; 2018 Feb; 8(1):2176. PubMed ID: 29391473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.