BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 22899164)

  • 1. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells.
    Lv M; Zheng D; Ye M; Sun L; Xiao J; Guo W; Lin C
    Nanoscale; 2012 Sep; 4(19):5872-9. PubMed ID: 22899164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.
    Liu B; Aydil ES
    J Am Chem Soc; 2009 Mar; 131(11):3985-90. PubMed ID: 19245201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple step growth of single crystalline rutile nanorods with the assistance of self-assembled monolayer for dye sensitized solar cells.
    Yang M; Neupane S; Wang X; He J; Li W; Pala N
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9809-15. PubMed ID: 24033252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.
    Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L
    Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.
    Yu H; Pan J; Bai Y; Zong X; Li X; Wang L
    Chemistry; 2013 Sep; 19(40):13569-74. PubMed ID: 23939704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells.
    Gao C; Li X; Lu B; Chen L; Wang Y; Teng F; Wang J; Zhang Z; Pan X; Xie E
    Nanoscale; 2012 Jun; 4(11):3475-81. PubMed ID: 22572999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells.
    Yip CT; Guo M; Huang H; Zhou L; Wang Y; Huang C
    Nanoscale; 2012 Jan; 4(2):448-50. PubMed ID: 22159643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of 3D interconnected porous TiO2 nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells.
    Koh JH; Koh JK; Seo JA; Shin JS; Kim JH
    Nanotechnology; 2011 Sep; 22(36):365401. PubMed ID: 21836328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells.
    Lin J; Liu X; Guo M; Lu W; Zhang G; Zhou L; Chen X; Huang H
    Nanoscale; 2012 Aug; 4(16):5148-53. PubMed ID: 22797488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel TiO2 tape for fabricating dye-sensitized solar cells on universal conductive substrates.
    Shen J; Cheng R; Chen Y; Chen X; Sun Z; Huang S
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13000-5. PubMed ID: 24289043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-dimensional hierarchical nanostructures of TiO(2) nanosheets on SnO(2) nanotubes for high efficiency solid-state dye-sensitized solar cells.
    Ahn SH; Kim DJ; Chi WS; Kim JH
    Adv Mater; 2013 Sep; 25(35):4893-7. PubMed ID: 23857743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic layer deposition of high performance ultrathin TiO₂ blocking layers for dye-sensitized solar cells.
    Kim DH; Woodroof M; Lee K; Parsons GN
    ChemSusChem; 2013 Jun; 6(6):1014-20. PubMed ID: 23720440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spherical TiO2 aggregates with different building units for dye-sensitized solar cells.
    Liu Z; Su X; Hou G; Bi S; Xiao Z; Jia H
    Nanoscale; 2013 Sep; 5(17):8177-83. PubMed ID: 23892684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.
    Kim DH; Seong WM; Park IJ; Yoo ES; Shin SS; Kim JS; Jung HS; Lee S; Hong KS
    Nanoscale; 2013 Dec; 5(23):11725-32. PubMed ID: 24114150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array.
    Lv Z; Yu J; Wu H; Shang J; Wang D; Hou S; Fu Y; Wu K; Zou D
    Nanoscale; 2012 Feb; 4(4):1248-53. PubMed ID: 22278314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of TiO₂ nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells.
    Roh DK; Patel R; Ahn SH; Kim DJ; Kim JH
    Nanoscale; 2011 Oct; 3(10):4162-9. PubMed ID: 21894346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiO2 nanotubes and their application in dye-sensitized solar cells.
    Roy P; Kim D; Lee K; Spiecker E; Schmuki P
    Nanoscale; 2010 Jan; 2(1):45-59. PubMed ID: 20648363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes.
    Yun TK; Park SS; Kim D; Shim JH; Bae JY; Huh S; Won YS
    Dalton Trans; 2012 Jan; 41(4):1284-8. PubMed ID: 22124477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple self-assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells.
    Song H; Lee KH; Jeong H; Um SH; Han GS; Jung HS; Jung GY
    Nanoscale; 2013 Feb; 5(3):1188-94. PubMed ID: 23299549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.