These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 22899167)

  • 21. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering.
    Boonen KJ; Langelaan ML; Polak RB; van der Schaft DW; Baaijens FP; Post MJ
    J Biomech; 2010 May; 43(8):1514-21. PubMed ID: 20189177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation.
    Li G; Peng H; Corsi K; Usas A; Olshanski A; Huard J
    J Bone Miner Res; 2005 Sep; 20(9):1611-23. PubMed ID: 16059633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair.
    Conconi MT; De Coppi P; Bellini S; Zara G; Sabatti M; Marzaro M; Zanon GF; Gamba PG; Parnigotto PP; Nussdorfer GG
    Biomaterials; 2005 May; 26(15):2567-74. PubMed ID: 15585259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies.
    Tourovskaia A; Figueroa-Masot X; Folch A
    Lab Chip; 2005 Jan; 5(1):14-9. PubMed ID: 15616734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization.
    Burattini S; Ferri P; Battistelli M; Curci R; Luchetti F; Falcieri E
    Eur J Histochem; 2004; 48(3):223-33. PubMed ID: 15596414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment.
    Coletti D; Teodori L; Albertini MC; Rocchi M; Pristerà A; Fini M; Molinaro M; Adamo S
    Cytometry A; 2007 Oct; 71(10):846-56. PubMed ID: 17694560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis.
    Shimizu K; Fujita H; Nagamori E
    J Biosci Bioeng; 2010 Feb; 109(2):174-8. PubMed ID: 20129103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compatibility of hyaluronic acid hydrogel and skeletal muscle myoblasts.
    Wang W; Fan M; Zhang L; Liu SH; Sun L; Wang CY
    Biomed Mater; 2009 Apr; 4(2):025011. PubMed ID: 19258701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation.
    Ku SH; Lee SH; Park CB
    Biomaterials; 2012 Sep; 33(26):6098-104. PubMed ID: 22681977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manipulation of the adhesive behaviour of skeletal muscle cells on soft and stiff polyelectrolyte multilayers.
    Ren K; Fourel L; Rouvière CG; Albiges-Rizo C; Picart C
    Acta Biomater; 2010 Nov; 6(11):4238-48. PubMed ID: 20601233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of static magnetic fields on human myoblast cell cultures.
    Stern-Straeter J; Bonaterra GA; Kassner SS; Faber A; Sauter A; Schulz JD; Hörmann K; Kinscherf R; Goessler UR
    Int J Mol Med; 2011 Dec; 28(6):907-17. PubMed ID: 21837362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds.
    Riboldi SA; Sadr N; Pigini L; Neuenschwander P; Simonet M; Mognol P; Sampaolesi M; Cossu G; Mantero S
    J Biomed Mater Res A; 2008 Mar; 84(4):1094-101. PubMed ID: 17685407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid formation of functional muscle in vitro using fibrin gels.
    Huang YC; Dennis RG; Larkin L; Baar K
    J Appl Physiol (1985); 2005 Feb; 98(2):706-13. PubMed ID: 15475606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TGF-beta's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner.
    Schabort EJ; van der Merwe M; Loos B; Moore FP; Niesler CU
    Exp Cell Res; 2009 Feb; 315(3):373-84. PubMed ID: 19038250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of skeletal muscle constructs by topographic activation of cell alignment.
    Zhao Y; Zeng H; Nam J; Agarwal S
    Biotechnol Bioeng; 2009 Feb; 102(2):624-31. PubMed ID: 18958861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient production of alpha-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation.
    Springer ML; Ozawa CR; Blau HM
    Cell Motil Cytoskeleton; 2002 Apr; 51(4):177-86. PubMed ID: 11977092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of channel width on alignment of smooth muscle cells by high-aspect-ratio microfabricated elastomeric cell culture scaffolds.
    Glawe JD; Hill JB; Mills DK; McShane MJ
    J Biomed Mater Res A; 2005 Oct; 75(1):106-14. PubMed ID: 16052500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro.
    Eberli D; Soker S; Atala A; Yoo JJ
    Methods; 2009 Feb; 47(2):98-103. PubMed ID: 18952174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.