These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 22899251)
21. Microfluidic flow rate detection based on integrated optical fiber cantilever. Lien V; Vollmer F Lab Chip; 2007 Oct; 7(10):1352-6. PubMed ID: 17896021 [TBL] [Abstract][Full Text] [Related]
22. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Wang X; Chen S; Kong M; Wang Z; Costa KD; Li RA; Sun D Lab Chip; 2011 Nov; 11(21):3656-62. PubMed ID: 21918752 [TBL] [Abstract][Full Text] [Related]
23. Direct manipulation and observation of the rotational motion of single optically trapped microparticles and biological cells in microvortices. Shelby JP; Mutch SA; Chiu DT Anal Chem; 2004 May; 76(9):2492-7. PubMed ID: 15117188 [TBL] [Abstract][Full Text] [Related]
24. Conical diffraction of linearly polarised light controls the angular position of a microscopic object. O'Dwyer DP; Phelan CF; Ballantine KE; Rakovich YP; Lunney JG; Donegan JF Opt Express; 2010 Dec; 18(26):27319-26. PubMed ID: 21197010 [TBL] [Abstract][Full Text] [Related]
26. Flow-assisted single-beam optothermal manipulation of microparticles. Liu Y; Poon AW Opt Express; 2010 Aug; 18(17):18483-91. PubMed ID: 20721243 [TBL] [Abstract][Full Text] [Related]
27. Micro-fluidic actuation using magnetic artificial cilia. Fahrni F; Prins MW; van Ijzendoorn LJ Lab Chip; 2009 Dec; 9(23):3413-21. PubMed ID: 19904409 [TBL] [Abstract][Full Text] [Related]
28. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping. Lakämper S; Lamprecht A; Schaap IA; Dual J Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872 [TBL] [Abstract][Full Text] [Related]
29. Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy. Mohanty K; Mohanty S; Monajembashi S; Greulich KO J Biomed Opt; 2007; 12(6):060506. PubMed ID: 18163801 [TBL] [Abstract][Full Text] [Related]
30. Microfluidic sorting in an optical lattice. MacDonald MP; Spalding GC; Dholakia K Nature; 2003 Nov; 426(6965):421-4. PubMed ID: 14647376 [TBL] [Abstract][Full Text] [Related]
31. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341 [TBL] [Abstract][Full Text] [Related]
32. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Shi J; Ahmed D; Mao X; Lin SC; Lawit A; Huang TJ Lab Chip; 2009 Oct; 9(20):2890-5. PubMed ID: 19789740 [TBL] [Abstract][Full Text] [Related]
34. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Lincoln B; Schinkinger S; Travis K; Wottawah F; Ebert S; Sauer F; Guck J Biomed Microdevices; 2007 Oct; 9(5):703-10. PubMed ID: 17505883 [TBL] [Abstract][Full Text] [Related]
35. Review of cell and particle trapping in microfluidic systems. Nilsson J; Evander M; Hammarström B; Laurell T Anal Chim Acta; 2009 Sep; 649(2):141-57. PubMed ID: 19699390 [TBL] [Abstract][Full Text] [Related]
36. End-faced waveguide mediated optical propulsion of microspheres and single cells in a microfluidic device. Lilge L; Shah D; Charron L Lab Chip; 2013 Jul; 13(13):2554-62. PubMed ID: 23411834 [TBL] [Abstract][Full Text] [Related]
37. Microfluidic integrated optoelectronic tweezers for single-cell preparation and analysis. Huang KW; Wu YC; Lee JA; Chiou PY Lab Chip; 2013 Sep; 13(18):3721-7. PubMed ID: 23884358 [TBL] [Abstract][Full Text] [Related]
38. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip. Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509 [TBL] [Abstract][Full Text] [Related]
39. Gel-based optical waveguides with live cell encapsulation and integrated microfluidics. Jain A; Yang AH; Erickson D Opt Lett; 2012 May; 37(9):1472-4. PubMed ID: 22555708 [TBL] [Abstract][Full Text] [Related]
40. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere. Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]