These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 22899521)

  • 1. Flexibility in locomotor-feeding integration during prey capture in varanid lizards: effects of prey size and velocity.
    Montuelle SJ; Herrel A; Libourel PA; Daillie S; Bels VL
    J Exp Biol; 2012 Nov; 215(Pt 21):3823-35. PubMed ID: 22899521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jaw and hyolingual movements during prey transport in varanid lizards: effects of prey type.
    Schaerlaeken V; Montuelle SJ; Aerts P; Herrel A
    Zoology (Jena); 2011 Jun; 114(3):165-70. PubMed ID: 21600748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor-feeding coupling during prey capture in a lizard (Gerrhosaurus major): effects of prehension mode.
    Montuelle SJ; Herrel A; Libourel PA; Reveret L; Bels VL
    J Exp Biol; 2009 Mar; 212(Pt 6):768-77. PubMed ID: 19251991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prey capture kinematics of ant-eating lizards.
    Meyers JJ; Herrel A
    J Exp Biol; 2005 Jan; 208(Pt 1):113-27. PubMed ID: 15601883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial feeding in the teiid lizard Tupinambis merianae: the effect of prey size on the movements of hyolingual apparatus and the cranio-cervical system.
    Montuelle SJ; Herrel A; Schaerlaeken V; Metzger KA; Mutuyeyezu A; Bels VL
    J Exp Biol; 2009 Aug; 212(Pt 16):2501-10. PubMed ID: 19648393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of the effect of prey properties on feeding kinematics in two species of lizards.
    Metzger KA
    J Exp Biol; 2009 Nov; 212(Pt 22):3751-61. PubMed ID: 19880738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of prey capture kinematics and the role of lingual sensory feedback in the lizard Pogona vitticeps.
    Schaerlaeken V; Meyers JJ; Herrel A
    Zoology (Jena); 2007; 110(2):127-38. PubMed ID: 17368008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separating the effects of prey size and speed on the kinematics of prey capture in the omnivorous lizard Gerrhosaurus major.
    Montuelle SJ; Herrel A; Libourel PA; Reveret L; Bels VL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jul; 196(7):491-9. PubMed ID: 20521149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of locomotor approach on feeding kinematics in the green anole (Anolis carolinensis).
    Montuelle SJ; Daghfous G; Bels VL
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):563-7. PubMed ID: 18661471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation, individual variation and the role of lingual sensory afferents in the control of prey transport in the lizard Pogona vitticeps.
    Schaerlaeken V; Herrel A; Meyers JJ
    J Exp Biol; 2008 Jul; 211(Pt 13):2071-8. PubMed ID: 18552296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of feeding, locomotor and visual systems in parrotfishes (Teleostei: Labridae).
    Rice AN; Westneat MW
    J Exp Biol; 2005 Sep; 208(Pt 18):3503-18. PubMed ID: 16155223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between dietary breadth and flexibility in jaw movement: A case study of two recently diverged insular populations of Podarcis lizards.
    Taverne M; Decamps T; Mira O; Sabolić I; Duarte Da Silva J; Glogoški M; Lisičić D; Štambuk A; Herrel A
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Mar; 265():111140. PubMed ID: 34979243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The integration of locomotion and prey capture in divergent cottid fishes: functional disparity despite morphological similarity.
    Kane EA; Higham TE
    J Exp Biol; 2011 Apr; 214(Pt 7):1092-9. PubMed ID: 21389193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A forceful upper jaw facilitates picking-based prey capture: biomechanics of feeding in a butterflyfish, Chaetodon trichrous.
    Copus JM; Gibb AC
    Zoology (Jena); 2013 Dec; 116(6):336-47. PubMed ID: 24156977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Horned lizards (Phrynosoma) incapacitate dangerous ant prey with mucus.
    Sherbrooke WC; Schwenk K
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):447-59. PubMed ID: 18570329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prey capture behavior and kinematics of the Atlantic cownose ray, Rhinoptera bonasus.
    Sasko DE; Dean MN; Motta PJ; Hueter RE
    Zoology (Jena); 2006; 109(3):171-81. PubMed ID: 16777392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biting releases constraints on moray eel feeding kinematics.
    Mehta RS; Wainwright PC
    J Exp Biol; 2007 Feb; 210(Pt 3):495-504. PubMed ID: 17234619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piscivorous cyprinid fish modulates suction feeding kinematics to capture elusive prey.
    Van Wassenbergh S; De Rechter D
    Zoology (Jena); 2011 Feb; 114(1):46-52. PubMed ID: 21185704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights from serranid fishes on the role of trade-offs in suction-feeding diversification.
    Oufiero CE; Holzman RA; Young FA; Wainwright PC
    J Exp Biol; 2012 Nov; 215(Pt 21):3845-55. PubMed ID: 22855615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeding behavior modulation in the leopard lizard (Gambelia wislizenii): effects of noxious versus innocuous prey.
    Lappin AK; German M
    Zoology (Jena); 2005; 108(4):287-95. PubMed ID: 16351977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.